PROBLEM SET SOLUTIONS

CHAPTER 9, Levine, Quantum Chemistry, $5^{\text {th }}$ Ed.
9.1 For the anharmonic oscillator with the Hamiltonian

$$
\mathrm{H}=-\underline{h}^{2} /(2 \mathrm{~m})\left\{\mathrm{d}^{2} / \mathrm{dx} \mathrm{x}^{2}\right\}+\mathrm{kx}^{2} / 2+\mathrm{cx}^{3}+\mathrm{d} \mathrm{x}^{4}
$$

evaluate E^{1} for the first excited state, taking the unperturbed system as the harmonic oscillator.

HINT: Example p. 248 ($5^{\text {th }}$ Ed.) shows how to calculate E^{1} for the ground state of the harmonic oscillator. Use the same method, just change the wavefunction to that for the first excited state.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{N}}^{1}=\mathrm{H}_{\mathrm{NN}}{ }^{1}=\int\left(\psi_{\mathrm{N}}^{0}\right)^{*} \mathrm{H}^{1} \psi_{\mathrm{N}}{ }^{0} \mathrm{~d} \tau, \mathrm{~N}=1 \text { for first excited state } \\
& \mathrm{H}^{1}=\mathrm{H}-\mathrm{H}^{0} \\
& \mathrm{H}^{0}=-\underline{h}^{2} /(2 \mathrm{~m})\left\{\mathrm{d}^{2} / \mathrm{dx}^{2}\right\}+\mathrm{kx}^{2} / 2 \\
& \mathrm{H}^{1}=\mathrm{c} \mathrm{x}^{3}+\mathrm{dx} \mathrm{x}^{4}
\end{aligned}
$$

For the harmonic oscillator, $\alpha=2 \pi \nu \mathrm{~m} / \underline{\mathrm{h}}=4 \pi^{2} v \mathrm{~m} / \mathrm{h} \&$
$\mathrm{v}=0$ is the ground state: $\psi_{0}=\mathrm{c}_{0} \mathrm{e}^{-\alpha x * 2 / 2}, \mathrm{c}_{0}=(\alpha / \pi)^{1 / 4}$

Example p. 248 shows that the first order correction to the ground state energy of the anharmonic oscillator is

$$
\mathrm{E}_{0}{ }^{1}=\mathrm{H}_{00}{ }^{1}=3 \mathrm{~d} /\left(4 \alpha^{2}\right)=3 \mathrm{dh}^{2} /\left[64 \pi^{4} \mathrm{v}^{2} \mathrm{~m}^{2}\right]
$$

For the harmonic oscillator
$\mathrm{v}=1$ is the first excited state: $\psi_{1}=\mathrm{c}_{1} \mathrm{Xe}^{-\alpha x^{* * 2 / 2}}, \mathrm{c}_{1}=\left(4 \alpha^{3} / \pi\right)^{1 / 4}$
The first order correction to the energy of the first excited state of the anharmonic oscillator is

$$
\begin{aligned}
& \mathrm{E}_{1}^{1}=\mathrm{H}_{11}^{1}=\int\left(\psi_{1}^{0}\right)^{*} \mathrm{H}^{1} \psi_{1}^{0} \mathrm{~d} \tau \\
& =\int_{-\infty}^{\infty}\left(\mathrm{c}_{1} \mathrm{x} \mathrm{e}^{-\alpha x^{* *} / 2}\right)^{2}\left(\mathrm{cx}^{3}+\mathrm{dx}^{4}\right) \mathrm{dx} \\
& =\left(\mathrm{c}_{1}\right)^{2} \int_{-\infty}^{\infty} \mathrm{x}^{2} \mathrm{e}^{-\alpha x^{* * 2}}\left(\mathrm{cx}^{3}+\mathrm{dx} x^{4}\right) \mathrm{dx} \\
& =\mathrm{c}\left(\mathrm{c}_{1}\right)^{2} \int_{-\infty}{ }^{\infty} \mathrm{x}^{5} \mathrm{e}^{-\alpha x^{* * 2}} \mathrm{dx}+\mathrm{d}\left(\mathrm{c}_{1}\right)^{2} \int_{-\infty}^{\infty} \mathrm{x}^{6} \mathrm{e}^{-\alpha x^{* * 2}} \mathrm{dx}
\end{aligned}
$$

first term is even x odd, so integral $=0$
$E_{1}{ }^{1}=2 d\left(c_{1}\right)^{2} \int_{0}^{\infty} x^{6} e^{-\alpha x * * 2} d x$

$$
=2 \mathrm{~d}\left(\mathrm{c}_{1}\right)^{2}\left(15 / 2^{4}\right)\left(\pi / \alpha^{7}\right)^{1 / 2}
$$

$$
\begin{aligned}
& =2 \mathrm{~d}\left(4 \alpha^{3} / \pi\right)^{1 / 2}\left(15 / 2^{4}\right)\left(\pi / \alpha^{7}\right)^{1 / 2} \\
& =\mathrm{d} 15 /\left(4 \alpha^{2}\right) \\
& =\mathrm{d} 15 /\left[4\left(4 \pi^{2} v \mathrm{~m} / \mathrm{h}\right)^{2}\right] \\
& =\mathrm{d} 15 \mathrm{~h}^{2} /\left[64 \pi^{4} v^{2} \mathrm{~m}^{2}\right]
\end{aligned}
$$

