PROBLEM SET SOLUTIONS

CHAPTER 8, Levine, Quantum Chemistry, $5^{\text {th }}$ Ed.
8.27(a) For the ground state of the hydrogen atom use the

Gaussian trial function $\phi=\exp \left[-\mathrm{cr}^{2} /\left(\mathrm{a}_{0}^{2}\right)\right]$.
Find the optimum value of c and the percent error in the energy.
(b) Multiply the trial function by the Spherical Harmonic $\mathrm{Y}_{2}{ }^{0}$, and the minimize the variational integral. This yields an upper bound to the energy of which hydrogen atom state?

- c is variable parameter. Find c by minimizing I with respect to c :

$$
\partial \mathrm{I} / \partial \mathrm{c}=0 .
$$

For the H atom, $\mathrm{H}=-\underline{\mathrm{h}}^{2} /\left(2 \mu^{2}\right) \nabla^{2}-\mathrm{Z}\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{r}$,

$$
\nabla^{2}=\partial^{2} / \partial \mathrm{r}^{2}+(2 / \mathrm{r}) \partial / \partial \mathrm{r}-\mathrm{L}^{2} /\left(\mathrm{r}^{2} \underline{h}^{2}\right)
$$

$\mathrm{L}^{2} \phi=\mathrm{L}^{2} \exp \left[-\mathrm{cr}^{2} /\left(\mathrm{a}_{0}^{2}\right)\right]=0$ since ϕ has no angular dependence.
$\mu \sim \mathrm{m}_{\mathrm{e}} \rightarrow \mathrm{a}_{0}=\underline{\mathrm{h}}^{2} /\left[\mathrm{m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{2}\right]$
Let $\mathrm{c}^{\prime}=\mathrm{c} / \mathrm{a}_{0}{ }^{2} \rightarrow \phi=\exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right]$
$\mathrm{H} \phi=-\underline{h}^{2} /\left(2 \mathrm{~m}_{\mathrm{e}}^{2}\right)\left\{-6 \mathrm{c}^{\prime} \mathrm{r}^{2} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right]+4\left(\mathrm{c}^{\prime}\right)^{2} \mathrm{r}^{2} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right]\right\}$
$-\left\{\mathrm{Z}\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{r}\right\} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right]$
$\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau=-\left(\underline{h}^{2} / \mathrm{m}_{\mathrm{e}}\right)(3 / 16)\left(\pi / \mathrm{c}^{\prime \prime}\right)^{1 / 2}-\left(\mathrm{e}^{\prime}\right)^{2} /\left[2 \mathrm{c} \mathrm{c}^{\prime \prime}\right], \mathrm{c} "=2 \mathrm{c}^{\prime}$
$\int \phi^{*} \phi \mathrm{~d} \tau=\pi^{1 / 2} /\left[4 \mathrm{c}^{113 / 2}\right]$
$\mathrm{I}=\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau / \int \phi^{*} \phi \mathrm{~d} \tau=\underline{h}^{2} 3 \mathrm{c}=/\left(4 \mathrm{~m}_{\mathrm{e}}\right)-2\left(\mathrm{e}^{\prime}\right)^{2}(\mathrm{c} " / \pi)^{1 / 2}$
$\partial \mathrm{I} / \partial \mathrm{c}=\left(\partial \mathrm{I} / \partial \mathrm{c}^{\prime \prime}\right)(\partial \mathrm{c}$ " $/ \partial \mathrm{c})=(\partial \mathrm{I} / \partial \mathrm{c} ")\left(2 / \mathrm{a}_{0}{ }^{2}\right)=0$ if $\left(\partial \mathrm{I} / \partial \mathrm{c}^{\prime \prime}\right)=0$
$(\partial \mathrm{I} / \partial \mathrm{c} ")=\underline{\mathrm{h}}^{2} 3 /\left(4 \mathrm{~m}_{\mathrm{e}}\right)-2\left(\mathrm{e}^{\prime}\right)^{2}(1 / 2) /(\mathrm{c} " \pi)^{-1 / 2} \rightarrow$
$\mathrm{c}^{\prime \prime}=\left(\mathrm{e}^{\prime}\right)^{4} \mathrm{~m}_{\mathrm{e}}{ }^{2} 16 /\left[\pi \underline{\mathrm{h}}^{4} 9\right]=2 \mathrm{c} / \mathrm{a}_{0}{ }^{2} \rightarrow \mathrm{c}=\mathrm{a}_{0}{ }^{2}\left(\mathrm{e}^{\prime}\right)^{4} \mathrm{~m}_{\mathrm{e}}{ }^{2} 16 /\left[2 \pi \underline{\mathrm{~h}}^{4} 9\right]$
$\mathrm{a}_{0}=\underline{\mathrm{h}}^{2} /\left[\mathrm{m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{2}\right] \rightarrow \mathrm{c}=8 /(9 \pi)$
$\mathrm{I}=\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau / \int \phi^{*} \phi \mathrm{~d} \tau \geq \mathrm{E}_{1}(\mathrm{n}=1$ ground state of H atom $)$

Use the value for c to evaluate I :

$$
\mathrm{I}=-\mathrm{a}_{0}{ }^{2}\left(\mathrm{e}^{\prime}\right)^{2}(9 \pi / 64) /\left\{\mathrm{a}_{0}^{3}\left(27 \pi^{2} / 256\right)\right\}=-0.424\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{a}_{0}
$$

For H atom, $\mathrm{E}_{\mathrm{n}}=-\mathrm{Z}^{2} \mathrm{~m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{4} /\left[2 \mathrm{n}^{2} \underline{\mathrm{~h}}^{2}\right]$

$$
\begin{aligned}
\mathrm{E}_{1} & =-\mathrm{m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{4} /\left[2 \underline{h}^{2}\right] \\
\% \text { error } & =\left|\mathrm{I}-\mathrm{E}_{1}\right| /\left|\mathrm{E}_{1}\right| \times 100=|0.424-0.500| /(0.500) \times 100 \\
= & 15 \%
\end{aligned}
$$

$$
8.14 \text { (b) } \phi=\exp \left[-\mathrm{cr}^{2} /\left(\mathrm{a}_{0}{ }^{2}\right)\right] \mathrm{Y}_{2}^{0}
$$

$$
\mathrm{L}^{2} \phi=\exp \left[-\mathrm{cr}^{2} /\left(\mathrm{a}_{0}{ }^{2}\right)\right] \mathrm{L}^{2} \mathrm{Y}_{2}{ }^{0}
$$

$$
=\exp \left[-\mathrm{cr}^{2} /\left(\mathrm{a}_{0}^{2}\right)\right]\left[2(2+1) \underline{\mathrm{h}}^{2}\right] \mathrm{Y}_{2}{ }^{0}
$$

$$
=6 \underline{h}^{2} \phi
$$

$$
\mathrm{H}=-\underline{\mathrm{h}}^{2} /\left(2 \mu^{2}\right) \nabla^{2}-\mathrm{Z}\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{r},
$$

$$
\nabla^{2}=\partial^{2} / \partial \mathrm{r}^{2}+(2 / \mathrm{r}) \partial / \partial \mathrm{r}-\mathrm{L}^{2} /\left(\mathrm{r}^{2} \underline{h}^{2}\right)
$$

$$
\mathrm{H} \phi=-\underline{h}^{2} /\left(2 \mathrm{~m}_{\mathrm{e}}\right)\left\{-6 \mathrm{c}^{\prime} \mathrm{r}^{2} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right] \mathrm{Y}_{2}{ }^{0}+4\left(\mathrm{c}^{\prime}\right)^{2} \mathrm{r}^{2} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right] \mathrm{Y}_{2}{ }^{0}\right.
$$

$$
\left.-\left(6 / \mathrm{r}^{2}\right) \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right] \mathrm{Y}_{2}{ }^{0}\right\}-\left\{\mathrm{Z}\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{r}\right\} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right] \mathrm{Y}_{2}{ }^{0}
$$

$\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau=\left(\mathrm{h}^{2} / \mathrm{m}_{\mathrm{e}}\right)(3 / 16)\left(\pi / \mathrm{c}^{\prime \prime}\right)^{1 / 2}-\left(\mathrm{e}^{\prime}\right)^{2} /[2 \mathrm{c}$ " $]($ from Part a)

$$
+6 \underline{\mathrm{~h}}^{2} /\left(2 \mathrm{~m}_{\mathrm{e}}\right) \int_{0}^{\infty} \exp \left[-\mathrm{c}^{\prime} \mathrm{r}^{2}\right] \mathrm{dr},\left(\mathrm{c} "=2 \mathrm{c}^{\prime}=2 \mathrm{c} / \mathrm{a}_{0}^{2}\right)
$$

$$
=\left(\underline{h}^{2} / \mathrm{m}_{\mathrm{e}}\right)(27 / 16)\left(\pi / \mathrm{c}^{\prime \prime}\right)^{1 / 2}-\left(\mathrm{e}^{\prime}\right)^{2} /[2 \mathrm{c} "]
$$

Note: $\int_{0}{ }^{2 \pi} \mathrm{~d} \phi \int_{0}{ }^{\pi} \mathrm{d} \theta \sin \theta \mathrm{Y}_{2}{ }^{0 *} \mathrm{Y}_{2}{ }^{0}=1$
$\int \phi^{*} \phi \mathrm{~d} \tau=\pi^{1 / 2} /\left[4 \mathrm{c}^{13 / 2}\right]$ (from Part a because Spherical Harmonics are normalized

$$
\begin{aligned}
& \mathrm{I}=\int \phi^{*} \mathrm{H} \phi \mathrm{~d} \tau / \int \phi^{*} \phi \mathrm{~d} \tau=\left\{\left(\underline{\mathrm{h}}^{2} / \mathrm{m}_{\mathrm{e}}\right)(27 / 16)\left(\pi / \mathrm{c}^{\prime}\right)^{1 / 2}\right. \\
& \left.\left.-\left(\mathrm{e}^{\prime}\right)^{2} /[2 \mathrm{c} \mathrm{c}]\right]\right\} /\left\{\pi^{1 / 2} /\left[4 \mathrm{c}^{\prime \prime 3 / 2}\right]\right\}=\underline{\mathrm{h}}^{2} 27 \mathrm{c} " /\left(4 \mathrm{~m}_{\mathrm{e}}\right)-2\left(\mathrm{e}^{\prime}\right)^{2}\left(\mathrm{c}^{\prime \prime} / \pi\right)^{1 / 2}
\end{aligned}
$$

$$
\partial \mathrm{I} / \partial \mathrm{c}=(\partial \mathrm{I} / \partial \mathrm{c} ")(\partial \mathrm{c} " / \partial \mathrm{c})=(\partial \mathrm{I} / \partial \mathrm{c} ")\left(2 / \mathrm{a}_{0}^{2}\right)=0 \text { if }\left(\partial \mathrm{I} / \partial \mathrm{c}^{\prime}\right)=0
$$

$$
\left(\partial \mathrm{I} / \partial \mathrm{c}^{\prime \prime}\right)=\underline{\mathrm{h}}^{2} 27 /\left(4 \mathrm{~m}_{\mathrm{e}}\right)-2\left(\mathrm{e}^{\prime}\right)^{2}(1 / 2) /\left(\mathrm{c}^{\prime \prime} \pi\right)^{-1 / 2} \rightarrow
$$

$$
\mathrm{c}^{\prime \prime}=\left(\mathrm{e}^{\prime}\right)^{4} \mathrm{~m}_{\mathrm{e}}^{2} 16 /\left[\pi \underline{\mathrm{h}}^{4} 27^{2}\right]=2 \mathrm{c} / \mathrm{a}_{0}^{2} \rightarrow
$$

$$
\mathrm{c}=\left(\mathrm{a}_{0}{ }^{2} / 2\right)\left(\mathrm{e}^{\prime}\right)^{4} \mathrm{~m}_{\mathrm{e}}{ }^{2} 16 /\left[\pi \underline{\mathrm{h}}^{4} 27^{2}\right]
$$

$$
\mathrm{a}_{0}=\underline{\mathrm{h}}^{2} /\left[\mathrm{m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{2}\right] \rightarrow \mathrm{c}=8 /\left(27^{2} \pi\right)
$$

$$
\mathrm{I}=\int_{\phi^{*}} \mathrm{H} \phi \mathrm{~d} \tau / \int \phi^{*} \phi \mathrm{~d} \tau \geq \mathrm{E}_{?} \quad \mathrm{n}=?
$$

For $\mathrm{c}=8 /\left(27^{2} \pi\right), \int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau=\left(27^{2} / 64\right) \pi \mathrm{a}_{0}{ }^{2}\left(\mathrm{e}^{\prime}\right)^{2}$
For $\mathrm{c}=8 /\left(27^{2} \pi\right), \int \phi^{*} \phi \mathrm{~d} \tau=-\pi^{2} \mathrm{a}_{0}{ }^{3} 27^{3} / 256$
$\mathrm{I}=\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau / \int \phi^{*} \phi \mathrm{~d} \tau=-(0.148 / \pi)\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{a}_{0}$
$\mathrm{E}_{\mathrm{n}}=-\mathrm{Z}^{2} \mathrm{~m}_{\mathrm{e}}\left(\mathrm{e}^{\prime}\right)^{4} /\left[2 \mathrm{n}^{2} \underline{\mathrm{~h}}^{2}\right]=-\left[0.500\left(\mathrm{e}^{\prime}\right)^{2} / \mathrm{a}_{0}\right] / \mathrm{n}^{2}, \mathrm{Z}=1$
$0.500 / n^{2} \sim 0.148 / \pi$ if $n=3$. So have upper bound to $n=3$ state.
8.28 Apply the linear variation function

$$
\phi=c_{1} x^{2}(L-x)+c_{2} x(L-x)^{2} \quad 0 \leq x \leq L
$$

to the particle in a one-dimensional box. Calculate the percent error for the $\mathrm{n}=1$ and $\mathrm{n}=2$ energies. Sketch $x^{2}(L-x), x(L-x)^{2}$, and the two apprxiate functions that you obtain. (To help sketch the functions find the nodes and the maxima and minima.)

Let $\phi=c_{1} f_{1}+c_{2} f_{2} \quad$ where $f_{1}=x^{2}(L-x), f_{2}=x(L-x)^{2}$
Solve for the two lowest energies by setting

$$
\sum_{\mathrm{k}=1,2} \mathrm{c}_{\mathrm{k}}\left(\mathrm{H}_{\mathrm{ik}}-\mathrm{S}_{\mathrm{ik}} \mathrm{I}\right)=0, \mathrm{i}=1,2 ; \mathrm{I}=\text { variational energy },
$$

$H_{i k}=\left\langle f_{i}\right| H\left|f_{k}\right\rangle, S_{i k}=\left\langle f_{i} \mid f_{k}\right\rangle$.
This has a nontrivial solution if the determinant of the coeffcients of the c's equals 0 :

$$
\left|\begin{array}{ll}
\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}\right) & \left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}\right) \\
\left(\mathrm{H}_{21}-\mathrm{S}_{21} \mathrm{I}\right) & \left(\mathrm{H}_{22}-\mathrm{S}_{22} \mathrm{I}\right)
\end{array}\right|=0
$$

or

$$
\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}\right)\left(\mathrm{H}_{22}-\mathrm{S}_{22} \mathrm{I}\right)-\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}\right)\left(\mathrm{H}_{21}-\mathrm{S}_{21} \mathrm{I}\right)=0
$$

which gives a quadratic equation for I:
$A I^{2}+B I+C=0$,
$\mathrm{I}=-\mathrm{B} /(2 \mathrm{~A}) \pm\left\{\mathrm{SQRT}\left(\mathrm{B}^{2}-4 \mathrm{AC}\right)\right\} /(2 \mathrm{~A})$ with
$A=S_{11} S_{22}-S_{21} S_{12}$
$\mathrm{B}=\mathrm{S}_{21} \mathrm{H}_{12}+\mathrm{S}_{12} \mathrm{H}_{21}-\left(\mathrm{S}_{11} \mathrm{H}_{22}+\mathrm{S}_{22} \mathrm{H}_{11}\right)$
$\mathrm{C}=\mathrm{H}_{11} \mathrm{H}_{22}-\mathrm{H}_{12} \mathrm{H}_{21}$

Evaluate the integrals $\boldsymbol{\&}$ solve for $\mathbf{I}_{\mathbf{1}} \boldsymbol{\&} \mathbf{I}_{\mathbf{2}}$:

$$
\mathrm{S}_{\mathrm{ik}}=\left\langle\mathrm{f}_{\mathrm{i}}\right| \mathrm{f}
$$

$$
\begin{aligned}
\begin{aligned}
\mathrm{A}= & \mathrm{S}_{11} \mathrm{~S}_{22}-\mathrm{S}_{21} \mathrm{~S}_{12} \\
& =\mathrm{S}_{11}^{2}-\mathrm{S}_{21}^{2}=\mathrm{L}^{14}\left(3.96 \times 10^{-5}\right) \\
\mathrm{B}= & \mathrm{S}_{21} \mathrm{H}_{12}+\mathrm{S}_{12} \mathrm{H}_{21}-\left(\mathrm{S}_{11} \mathrm{H}_{22}+\mathrm{S}_{22} \mathrm{H}_{11}\right) \\
& =2\left(\mathrm{~S}_{21} \mathrm{H}_{12}-\mathrm{S}_{11} \mathrm{H}_{22}\right) \\
& =-\left\{\underline{\mathrm{h}}^{2} /(2 \mathrm{~m})\right\} 2 \mathrm{~L}^{1 / 2}\left(10.32 \times 10^{-4}\right) \\
\mathrm{C}= & \mathrm{H}_{11} \mathrm{H}_{22}-\mathrm{H}_{12} \mathrm{H}_{21} \\
& =\mathrm{H}_{11}^{2}-\mathrm{H}_{12}^{2}=-\left\{\underline{\mathrm{h}}^{2} /(2 \mathrm{~m})\right\} \mathrm{L}^{10}(0.0167) \\
\mathrm{I}= & \{(2.06 \pm 1.26) / 7.92\} 10^{2}\left\{\underline{\mathrm{~h}}^{2} /\left(2 \mathrm{~m} \mathrm{~L}^{2}\right)\right\} \\
\mathrm{I}_{1}= & 0.101 \times 10^{2}\left\{\underline{\mathrm{~h}}^{2} /\left(2 \mathrm{~m} \mathrm{~L}^{2}\right)\right\} \geq \mathrm{E}_{1} \\
\mathrm{I}_{2}= & 0.419 \times 10^{2}\left\{\underline{\mathrm{~h}}^{2} /\left(2 \mathrm{~mL}^{2}\right)\right\} \geq \mathrm{E}_{2}
\end{aligned}
\end{aligned}
$$

Calculate \% error in energy:

For a particle in a one-dimensional box:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2} \mathrm{~h}^{2} /\left(8 \mathrm{~mL} \mathrm{~L}^{2}\right), \quad \underline{\mathrm{h}}=\mathrm{h} /(2 \pi) \\
& \mathrm{I}_{1}=10.1\left\{\underline{\mathrm{~h}}^{2} /\left(2 \mathrm{~m} \mathrm{~L}^{2}\right)\right\}=10.1 \mathrm{~h}^{2} /\left(4 \pi^{2} 2 \mathrm{~m} \mathrm{~L}^{2}\right) \\
& \quad=\left(10.1 / \pi^{2}\right) \mathrm{h}^{2} /\left(8 \mathrm{~m} \mathrm{~L}^{2}\right)=1.02 \mathrm{~h}^{2} /\left(8 \mathrm{~m} \mathrm{~L}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{h}^{2} /\left(8 \mathrm{~mL}^{2}\right) \\
& \% \text { error }=\left(\left|\mathrm{I}_{1}-\mathrm{E}_{1}\right| / \mathrm{E}_{1}\right) \times 100=(1.02-1) \times 100=2 \% \\
& \mathrm{I}_{2}=41.9\left\{\underline{h}^{2} /\left(2 \mathrm{~m} \mathrm{~L}^{2}\right)\right\}=41.9 \mathrm{~h}^{2} /\left(4 \pi^{2} 2 \mathrm{~m} \mathrm{~L}^{2}\right) \\
& \quad=\left(41.9 / \pi^{2}\right) \mathrm{h}^{2} /\left(8 \mathrm{~m} \mathrm{~L}^{2}\right)=4.25 \mathrm{~h}^{2} /\left(8 \mathrm{~m} \mathrm{~L}{ }^{2}\right) \\
& \mathrm{E}_{2}=4 \mathrm{~h}^{2} /\left(8 \mathrm{~mL}^{2}\right) \\
& \% \text { error }=\left(\left|\mathrm{I}_{2}-\mathrm{E}_{2}\right| / \mathrm{E}_{2}\right) \times 100=[(4.25-4) / 4] \times 100=6.25 \%
\end{aligned}
$$

Find ϕ_{1} by finding the $\mathbf{c}_{1} \& \mathbf{c}_{2}$ that correspond to \mathbf{I}_{1}. Repeat for ϕ_{2} and \mathbf{I}_{2}. Note: $\mathbf{c}_{1} \boldsymbol{\&} \mathbf{c}_{\mathbf{2}}$ for ϕ_{1} are DIFFERENT from $\mathbf{c}_{1} \boldsymbol{\&}$ c_{2} for ϕ_{2}
$\Sigma \mathrm{c}_{\mathrm{k}}\left(\mathrm{H}_{\mathrm{ik}}-\mathrm{S}_{\mathrm{ik}} \mathrm{I}_{1}\right)=0, \mathrm{i}=1,2$
$\mathrm{k}=1,2$
Discard one of the two eq. For example, use the eq. with $\mathrm{I}=1$:
$\mathrm{c}_{1}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{1}\right)+\mathrm{c}_{2}\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{1}\right)=0$
Solve for c_{2} in terms of c_{1} :

$$
\mathrm{c}_{2}=-\mathrm{c}_{1}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{1}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{1}\right)
$$

Then solve for c_{1} by normalizing ϕ_{1} :

$$
\left\langle\phi_{1} \mid \phi_{1}\right\rangle=1=\int_{0}^{\mathrm{L}}\left(\mathrm{c}_{1} \mathrm{f}_{1}+\mathrm{c}_{2} \mathrm{f}_{2}\right)^{2} \mathrm{dx}
$$

$$
\begin{aligned}
& 1=\mathrm{c}_{1}^{2}\left\{\mathrm{~S}_{11}+\mathrm{S}_{22}\left[\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{1}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{1}\right)\right]^{2} \\
& \left.-2 \mathrm{~S}_{12}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{1}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{1}\right)\right\} \\
& =\mathrm{c}_{1}^{2}\left\{\mathrm{~L}^{7} / 105+\left(\mathrm{L}^{7} / 105\right)(-0.949)^{2}-2\left(\mathrm{~L}^{7} / 140\right)(-0.949)\right\} \\
& =\mathrm{c}_{1}^{2} \mathrm{~L}^{7}(0.0317) \\
& \mathrm{c}_{1}=5.62 / \mathrm{L}^{7 / 2} \\
& \mathrm{c}_{2}=-\mathrm{c}_{1}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{1}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{1}\right)=-\mathrm{c}_{1}(-0.949)=5.33 / \mathrm{L}^{7 / 2} \\
& \phi_{1}=\mathrm{c}_{1} \mathrm{f}_{1}+\mathrm{c}_{2} \mathrm{f}_{2}=\left(5.62 / \mathrm{L}^{7 / 2}\right) \mathrm{f}_{1}+\mathrm{c}_{2}\left(5.33 / \mathrm{L}^{7 / 2}\right)
\end{aligned}
$$

is an approximation to the ground state wavefunction for the particle in a one-dimensional box

Find ϕ_{2} the same way, but use I_{2} :
Discard one of the two eq. For example, use the eq. with $\mathrm{I}=2$:
$\mathrm{c}_{1}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{2}\right)+\mathrm{c}_{2}\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{2}\right)=0$
Solve for c_{2} in terms of c_{1} :

$$
c_{2}=-c_{1}\left(H_{11}-S_{11} I_{2}\right) /\left(H_{12}-S_{12} I_{2}\right)
$$

Then solve for c_{1} by normalizing $\phi_{2}: \phi_{2}=\mathrm{c}_{1} \mathrm{f}_{1}+\mathrm{c}_{2} \mathrm{f}_{2}$

$$
\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1=\int_{0}^{\mathrm{L}}\left(\mathrm{c}_{1} \mathrm{f}_{1}+\mathrm{c}_{2} \mathrm{f}_{2}\right)^{2} \mathrm{dx}
$$

$$
\begin{aligned}
1= & \mathrm{c}_{1}^{2}\left\{\mathrm{~S}_{11}+\mathrm{S}_{22}\left[\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{2}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{2}\right)\right]^{2} \\
& \left.-2 \mathrm{~S}_{12}\left(\mathrm{H}_{11}-\mathrm{S}_{11} \mathrm{I}_{2}\right) /\left(\mathrm{H}_{12}-\mathrm{S}_{12} \mathrm{I}_{2}\right)\right\}
\end{aligned}
$$

Note: The form is the same as in the ϕ_{1} case but $\mathrm{c}_{1} \& \mathrm{c}_{2}$ will be different because I_{2} is used instead of I_{1}.
$1=c_{1}{ }^{2} L^{7}(0.0048)$
$c_{1}=14.4 / L^{7 / 2}$
$c_{2}=-c_{1}\left(H_{11}-S_{11} I_{2}\right) /\left(H_{12}-S_{12} I_{2}\right)=-c_{1}(1)=-14.4 / L^{7 / 2}$
$\phi_{2}=c_{1} f_{1}+c_{2} f_{2}=\left(14.4 / L^{7 / 2}\right) f_{1}+=\left(-14.4 / L^{7 / 2}\right) f_{2}$
is an approximation to the first excited state wavefunction for the particle in a one-dimensional box

Plot the functions f_{1}, f_{2}, ϕ_{1}, and ϕ_{2} for an arbitrary choice of L (say $\mathrm{L}=1$). To do this, evaluate the functions at $\mathrm{x}=0, \mathrm{~L} / 4, \mathrm{~L} / 2$, 3L/4, and L:

x	0	$\mathrm{~L} / 4$	$\mathrm{~L} / 2$	$3 \mathrm{~L} / 4$	L
f_{1}	0	$3 \mathrm{~L}^{3} / 64=$	$\mathrm{L}^{3} / 8=$	$9 \mathrm{~L}^{3} / 64=$	0
		$0.0469 \mathrm{~L}^{3}$	$0.125 \mathrm{~L}^{3}$	$0.140 \mathrm{~L}^{3}$	
f_{2}	0	$9 \mathrm{~L}^{3} / 64=$ $0.140 \mathrm{~L}^{3}$	$\mathrm{~L}^{3} / 8=$	$3 \mathrm{~L}^{3} / 64=$	0
		$1.125 \mathrm{~L}^{3}$	$0.0469 \mathrm{~L}^{3}$		
ϕ_{1}	0	$1.01 / \mathrm{L}^{1 / 2}$	$1.37 / \mathrm{L}^{1 / 2}$	$1.04 / \mathrm{L}^{1 / 2}$	0
ϕ_{2}	0	$-1.35 /$	0	$1.35 / \mathrm{L}^{1 / 2}$	0

| | $\mathrm{L}^{1 / 2}$ | |
| :--- | :--- | :--- | :--- | :--- |

8.1 ($3^{\text {rd }} \mathrm{Ed}$.) Use the trial function

$$
\phi=\exp \left[-b \alpha x^{2}\right]
$$

for the ground state of the harmonic oscillator. Show that minimization of the variation integral gives $\mathrm{b}=1 / 2$ and $\mathrm{E}_{0} \leq$ $\mathrm{h} v / 2$.

Find b by minimization of I with respect to b :
$\partial \mathrm{I} / \partial \mathrm{b}=0=\partial / \partial \mathrm{b}\left[\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau / \int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau\right]$
$\int \phi^{*} \phi \mathrm{~d} \tau=[\pi /(2 \mathrm{~b} \alpha)]^{1 / 2}$
$\partial / \partial \mathrm{b}\left[\int \phi^{*} \phi \mathrm{~d} \tau\right]=-\left\{1 /\left(2 \mathrm{~b}^{3 / 2}\right)\right\}\left[\pi /(2 \alpha)^{1 / 2}\right]$
$H=\left\{\underline{h}^{2} /(2 m)\right\}\left(-d^{2} / d x^{2}+\alpha^{2} x^{2}\right)$
$\mathrm{H} \phi=\left\{\underline{\mathrm{h}}^{2} /(2 \mathrm{~m})\right\}\left[2 \mathrm{~b} \alpha+\alpha^{2} \mathrm{x}^{2}\left(1-4 \mathrm{~b}^{2}\right)\right] \exp \left[-\mathrm{b} \alpha \mathrm{x}^{2}\right]$
$\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau=\left\{\underline{\mathrm{h}}^{2} /(2 \mathrm{~m})\right\}\left[\mathrm{b}^{1 / 2}(\alpha \pi / 2)^{1 / 2}+\left(1 / \mathrm{b}^{3 / 2}\right)\left(\alpha \pi / 2^{5}\right)^{1 / 2}\right]$
$\partial / \partial \mathrm{b}\left[\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau\right]=\left\{\underline{h}^{2} /(2 \mathrm{~m})\right\}(\alpha \pi /(2 \mathrm{~b}))^{1 / 2}\left\{1-3 /\left(4 \mathrm{~b}^{2}\right)\right\}$
$\partial \mathrm{I} / \partial \mathrm{b}=0=\left\{1 / \int \phi^{*} \phi \mathrm{~d} \tau\right\} \partial / \partial \mathrm{b}\left\{\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau\right\}$
$+\left\{\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau\right\} \partial / \partial \mathrm{b}\left\{1 / \int \phi^{*} \phi \mathrm{~d} \tau\right\}$
$\mathrm{b}^{2}=1 / 4, \mathrm{~b}=1 / 2 ; \mathrm{I}=\left[\int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau / \int \phi^{*} \mathrm{H} \phi \mathrm{d} \tau\right]=\mathrm{h} v / 2$

