
PROBLEM SET SOLUTIONS

Chapter 7, Quantum Chemistry, 5th Ed., Levine

7.6 Which of the following operators are Hermitian?

For a Hermitian operator, <A> = <A>*, or

<fAg> = <gA f>*.  Assume f & g are well-behaved at limits

of integration.

Integration by parts: ∫ u v' = uv - ∫ v u'

(a) <fd/dxg> = ∫ f* (dg/dx) dτ = f*g  - ∫ g (df/dx)* dτ

= - <gd/dx f>*  NO

(b) <f i d/dxg> = ∫ f* (i dg/dx) dτ = i f*g  + ∫ g (i df/dx)*dτ

= <g i d/dx f>*    YES

(c) <f4 d2/dx2g> = ∫ f* (4 d2g/dx2) dτ ; [u = f, v' = d2g/dx2,

v = dg/dx, u' = df/dx]

= 4 f*dg/dx  - 4 ∫ (dg/dx) (df/dx)*dτ ; [u = df*/dx, v' = dg/dx,

v = g, u' = d2f*/dx 2]

= -4 (df*/dx)g  + 4 ∫g d2f*/dx 2 dτ

= <g4 d2/dx2 f>    YES

(d) <f i d2/dx2g> = ∫ f* (i d2g/dx2) dτ ; [u = f, v' = d2g/dx2,

v = dg/dx, u' = df/dx]

= i f*dg/dx  - i ∫ (dg/dx) (df/dx)*dτ ; [u = df*/dx, v' = dg/dx,

v = g, u' = d2f*/dx 2]

= -i (df*/dx)g  + i ∫ g d2f*/dx 2 dτ = -∫ g (i d2f/dx2)* dτ



= - <g i d2/dx2 f>*   NO



7.9 Which of the following operators meet all the requirements for a quantum mechancal

operator that is to represent a physical quantity?

Operator must be linear & Hermitian

(a) SQRT = (    )1/2  NOT LINEAR

(b) d/dx LINEAR, NOT HERMITIAN

(c) d2/dx2 LINEAR & HERMITIAN

(d) i d/dx LINEAR & HERMITIAN



7.17 For the hydrogenlike atom,

V = -Z (e')2 (x2 + y2 + z2)-1/2

And the potential energy is an even function of the coordinates.

(a) What is the parity of ψ2s?

ψ2s = 1/[4(2π)1/2] (Z/a)3/2 (2 - Zr/a) e-Zr/(2a)

Π (x) = -x, Π (y) = -y, Π (z) = -z,

Π (r) = r, Π (θ) = π - θ, Π (φ) = π + φ

Π ψ2s= 1/[4(2π)1/2] (Z/a)3/2Π {(2 - Zr/a) e-Zr/(2a)}

= 1/[4(2π)1/2] (Z/a)3/2(2 - Zr/a) e-Zr/(2a)

= ψ2s  EVEN

(b) What is the parity of ψ2px?

ψ2px = 1/[4(2π)1/2] (Z/a)5/2 r e-Zr/(2a) sin θ cos φ

Π ψ2px = 1/[4(2π)1/2] (Z/a)5/2Π { r e-Zr/(2a) sin θ cos φ}

= 1/[4(2π)1/2] (Z/a)5/2 r e-Zr/(2a) sin (π - θ) cos (π + φ)

sin (π - θ) = sin π cos θ - cos π sin θ = 0 - (-1) sin θ = sin θ

cos (π + φ) = cos π cos φ - sin π sin φ = - cos φ - 0 = - cos φ

Π ψ2px = 1/[4(2π)1/2] (Z/a)5/2 r e-Zr/(2a) sin θ (- cos φ)

= - ψ2pxODD

(c)ψ2s + ψ2px = 1/[4(2π)1/2] (Z/a)3/2 e-Zr/(2a)

x{2 - Zr/a + rZ/a sin θ cos φ}

H (ψ2s + ψ2px ) = H ψ2s + H ψ2px  = E2ψ2s + E2ψ2px

= E2 (ψ2s + ψ2px ) Yes, eigenfunction

Π (ψ2s + ψ2px ) = Π ψ2s + Π ψ2px= ψ2s - ψ2px



neither even nor odd, no parity

We showed previously that when V is even, the wavefunctions of a system with non-degenergate
energy levels must be of definite parity.  Here, the n=2 level is degenerate, hence no definite
parity.



7.26 For a hydrogen atom in a p state, the possible outcomes of a measurement of Lz are -h,
0, and h. For each of the following wavefunctions give the probabilities of each of these
three results.

Lz ψ2pm = m h ψ2pm; for a p state, m = -1, 0, 1

Write ψ as a linear combination of eigenfunctions of Lz. The probability of getting a particular
value when the property is measured is the square of the corresponding coefficient.

Probability of measuring property i =   ci 2

1 = Σ   ci 2

(a) ψ2pz = ψ2p0 = c1 ψ2p-1 + c2 ψ2p0  + c3 ψ2p1

c1= c3= 0. c2= 1

Probability of measuring h is square of coefficient of ψ2p1 : 0

Probability of measuring -h is square of coefficient of ψ2p-1 : 0

Probability of measuring 0 is square of coefficient of ψ2p0 : 1.

Note: c1
2
 = c2

2 + c3
2 = 1 = 0 + 1 + 0

(b) ψ2py = -i/√2 ψ2p1 + i/√2 ψ2p-1

Probability of measuring h is square of coefficient of ψ2p1 :

 -i/√2 2 = (-i/√2) (-i/√2)* = 1/2

Probability of measuring -h is square of coefficient of ψ2p-1 :

 i/√2 2 = (i/√2) (i/√2)* = 1/2

Probability of measuring 0 is square of coefficient of ψ2p0 : 0

Note: c1
2
 = c2

2 + c3
2 = 1 = 1/2 + 1/2 + 0

(c) ψ2p1 = c1 ψ2p-1 + c2 ψ2p0  + c3 ψ2p1

c1 = 0 = c2, c3
 = 1 & c1

2
 = c2

2 + c3
2 = 1

Probability of measuring h is square of coefficient of ψ2p1 : 1



Probability of measuring -h is square of coefficient of ψ2p-1 : 0

Probability of measuring 0 is square of coefficient of ψ2p0 : 0.



7.27 (3rd Ed.; like example, p. 185, 5th Ed.) Consider a particle in a nonstationary state in a one-

dimensional box of length L with infinite walls.  Suppose at time t0 its state function is the

parabolic function

ψ(t0) = N x (L - x) 0 < x < L

where N is the normalization constant.  If at time t0 we were to make a measurement of the

particle's energy, what would be the possible outcomes of the measurement & what would be

the probability for each such outcome?

For a 1D particle in a box, H = -h2/(2m) d2/dx2;

V = 0 (0 < x < L), V = ∞ (x < 0, x > L)

The complete set of eigenfunctions of the H operator for a 1D particle in a box are the ψn

ψn = (2/L)1/2 sin (nπx/L) 0 < x < L

ψn = 0 x < 0, x > L

Since ψ(t0) is an arbitrary function, we can expand it in terms of the eigenfunctions of H:

ψ(t0) = Σ c n ψn, where c n = <ψ(t0) ψ n>.

The probability of obtaining the eigenfunction En when making a measurement is   c n 2.  Find c

n:

c n = <ψ(t0) ψ n>

= ∫0
L ψ(t0) ψn dx = ∫0

L N x (L - x) (2/L)1/2 sin (nπx/L) dx

= N (2/L)1/2 {L ∫0
L x sin (nπx/L) dx - ∫0

L x2 sin (nπx/L) dx}

= N (2/L)1/2 [L/(nπ)]3 {- (nπ)2 cos (nπ)

+ [(nπ)2 -2] cos (nπ) + 2}

= N (2/L)1/2 [L/(nπ)]3 2 (1 - cos (nπ))



If n = 1, 3, 5…, cos (nπ) = -1. If n = 2, 4, 6…, cos (nπ) = 1.

c n = N 23/2 L5/2/ (nπ)3 (1 - (-1)) = N 25/2 L5/2/ (nπ)3,

n = 1, 3, 5…,

c n = N 23/2 L5/2/ (nπ)3 (1 - 1) = 0,  n = 2, 4, 6…,

Probability of measuring E n is   c n 2.

  c n 2 = 0,  n = 2, 4, 6…,

ψ(t0) = N x (L - x), 0 < x < L, is odd function

ψn = (2/L)1/2 sin (nπx/L), 0 < x < L, is even & so doesn't contribute to ψ(t0)

  c n 2 = N2 25 L5/ (nπ)6,  n = 1, 3, 5…,

To evaluate c n need normalization constant N:

<ψ(t0)   ψ(t0)> = ∫0
L N2 x2 (L - x) 2 dx

= ∫0
L N2 x2 (L2 - L x + x2) dx

= N2 (L2 ∫0
L x2 dx - 2L ∫0

L x3 dx + ∫0
L x4 dx)

= N2 {L 2 (x3/3) 0
L - 2L (x4/4) 0

L  + (x5/5) 0
L}

= N2 {L 5/3 - 2 L5/4 + L5/5}

= N2 L5{1/3 - 2/4 + 1/5} = N2 L5/30 = 1 , if N = SQRT (30/ L5)

  c n 2 =  (30/ L5) 25 L5/ (nπ)6,  n = 1, 3, 5…,

= (30) (32)/(nπ)6

  c 1 2 = (30) (32)/(π)6 = 0.99855

  c 3 2 = (30) (32)/(2π)6 = 0.001370

  c 5 2 = (30) (32)/(4π)6 = 0.000064

Most of the contribution comes from ψ1 because it losely resembles ψ(t0)--See Fig. 7.3, p. 186,

5th Ed.




