PROBLEM SET SOLUTIONS

Chapter 7, Quantum Chemistry, $5^{\text {th }}$ Ed., Levine

7.6 Which of the following operators are Hermitian?

For a Hermitian operator, $\langle\mathrm{A}\rangle=\langle\mathrm{A}\rangle *$, or
$<\mathrm{f}|\mathrm{A}| \mathrm{g}>=<\mathrm{g}|\mathrm{A}| f>^{*}$. Assume $\mathrm{f} \& \mathrm{~g}$ are well-behaved at limits of integration.

Integration by parts: $\int u v^{\prime}=u v-\int v u^{\prime}$
(a) $\langle\mathrm{f}| \mathrm{d} / \mathrm{dx} \mathrm{g}>=\int \mathrm{f}^{*}(\mathrm{dg} / \mathrm{dx}) \mathrm{d} \tau=\mathrm{f}^{*} \mathrm{~g} \mid-\int \mathrm{g}(\mathrm{df} / \mathrm{dx})^{*} \mathrm{~d} \tau$

$$
=-\langle\mathrm{g}| \mathrm{d} / \mathrm{d} x|\mathrm{f}\rangle * \mathrm{NO}
$$

(b) $\left\langle\mathrm{f} \| \mathrm{d} / \mathrm{dx} \mathrm{g}>=\int \mathrm{f} *(\mathrm{idg} / \mathrm{dx}) \mathrm{d} \tau=\mathrm{if} \mathrm{f}^{*} \mathrm{~g}\right|+\int \mathrm{g}(\mathrm{idf} / \mathrm{dx}) * \mathrm{~d} \tau$
$=<\mathrm{g}|\mathrm{d} / \mathrm{dx}| \mathfrak{f}>*$ YES
(c) $\left\langle\mathrm{f} 4 \mathrm{~d}^{2} / \mathrm{dx} \mathrm{x}^{2} \mathrm{~g}>=\int \mathrm{f}^{*}\left(4 \mathrm{~d}^{2} \mathrm{~g} / \mathrm{dx}^{2}\right) \mathrm{d} \tau ;\left[\mathrm{u}=\mathrm{f}, \mathrm{v}^{\prime}=\mathrm{d}^{2} \mathrm{~g} / \mathrm{dx}^{2}\right.\right.$,

$$
\left.\mathrm{v}=\mathrm{dg} / \mathrm{dx}, \mathrm{u}^{\prime}=\mathrm{df} / \mathrm{dx}\right]
$$

$=4 \mathrm{f}^{*} \mathrm{dg} / \mathrm{dx} \mid-4 \int(\mathrm{dg} / \mathrm{dx})(\mathrm{df} / \mathrm{dx})^{*} \mathrm{~d} \tau ;\left[\mathrm{u}=\mathrm{df} \mathrm{f}^{*} / \mathrm{dx}, \mathrm{v}^{\prime}=\mathrm{dg} / \mathrm{dx}\right.$,

$$
\left.\mathrm{v}=\mathrm{g}, \mathrm{u}^{\prime}=\mathrm{d}^{2} \mathrm{f}^{*} / \mathrm{dx}^{2}\right]
$$

$=-4(d f * / d x) g \mid+4 \int g d^{2} f^{*} / d x^{2} d \tau$
$=\left\langle\mathrm{g} \mid 4 \mathrm{~d}^{2} / \mathrm{dx}^{2} \mathrm{f}\right\rangle \quad$ YES
(d) $\left\langle\mathrm{fli} \mathrm{d}^{2} / d x^{2} \mathrm{~g}\right\rangle=\int \mathrm{f}^{*}\left(\mathrm{i} \mathrm{d} \mathrm{d}^{2} \mathrm{~g} / \mathrm{dx} \mathrm{x}^{2}\right) \mathrm{d} \tau ;\left[\mathrm{u}=\mathrm{f}, \mathrm{v}^{\prime}=\mathrm{d}^{2} \mathrm{~g} / \mathrm{dx}^{2}\right.$,

$$
\left.\mathrm{v}=\mathrm{dg} / \mathrm{dx}, \mathrm{u}^{\prime}=\mathrm{df} / \mathrm{dx}\right]
$$

$=i f^{*} d g / d x \mid-i \int(d g / d x)(d f / d x) * d \tau ;\left[u=d f^{*} / d x, v^{\prime}=d g / d x\right.$,

$$
\left.\mathrm{v}=\mathrm{g}, \mathrm{u}^{\prime}=\mathrm{d}^{2} \mathrm{f}^{*} / \mathrm{dx}^{2}\right]
$$

$=-i\left(d f^{*} / d x\right) g \mid+i \int g d^{2} f * / d x^{2} d \tau=-\int g\left(i d^{2} f / d x^{2}\right)^{*} d \tau$

$$
=-\langle\mathrm{g}| \mathrm{d}^{2} / \mathrm{dx}^{2}|\mathrm{f}\rangle * \mathrm{NO}
$$

7.9 Which of the following operators meet all the requirements for a quantum mechancal operator that is to represent a physical quantity?

Operator must be linear \& Hermitian
(a) $\mathrm{SQRT}=(\quad)^{1 / 2}$ NOT LINEAR
(b) d / dx LINEAR, NOT HERMITIAN
(c) $\mathrm{d}^{2} / \mathrm{dx}^{2}$ LINEAR \& HERMITIAN
(d) id/dx

LINEAR \& HERMITIAN
7.17 For the hydrogenlike atom,

$$
V=-Z\left(e^{\prime}\right)^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
$$

And the potential energy is an even function of the coordinates.
(a) What is the parity of $\psi_{2 s}$?

$$
\begin{aligned}
& \psi_{2 \mathrm{~s}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{3 / 2}(2-\mathrm{Zr} / \mathrm{a}) \mathrm{e}^{-\mathrm{Zr} /(2 \mathrm{a})} \\
& \Pi(\mathrm{x})=-\mathrm{x}, \Pi(\mathrm{y})=-\mathrm{y}, \Pi(\mathrm{z})=-\mathrm{z}, \\
& \Pi(\mathrm{r})=\mathrm{r}, \Pi(\theta)=\pi-\theta, \Pi(\phi)=\pi+\phi \\
& \Pi \psi_{2 \mathrm{~s}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{3 / 2} \Pi\left\{(2-\mathrm{Zr} / \mathrm{a}) \mathrm{e}^{-\mathrm{Zr} /(2 \mathrm{a})}\right\} \\
& =1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{3 / 2}(2-\mathrm{Zr} / \mathrm{a}) \mathrm{e}^{-\mathrm{Zr} /(2 \mathrm{a})} \\
& =\psi_{2 \mathrm{~s}} \quad \quad \text { EVEN }
\end{aligned}
$$

(b) What is the parity of $\Psi_{2 p \mathrm{x}}$?
$\psi_{2 \mathrm{px}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{5 / 2} \mathrm{re}^{-\mathrm{Zr} /(2 \mathrm{a})} \sin \theta \cos \phi$
$\Pi \psi_{2 \mathrm{px}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{5 / 2} \Pi\left\{\mathrm{re}^{-\mathrm{Zr} /(2 \mathrm{az})} \sin \theta \cos \phi\right\}$
$=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{5 / 2} \mathrm{re}^{-\mathrm{Zr} /(2 \mathrm{a})} \sin (\pi-\theta) \cos (\pi+\phi)$
$\sin (\pi-\theta)=\sin \pi \cos \theta-\cos \pi \sin \theta=0-(-1) \sin \theta=\sin \theta$
$\cos (\pi+\phi)=\cos \pi \cos \phi-\sin \pi \sin \phi=-\cos \phi-0=-\cos \phi$
$\Pi \psi_{2 \mathrm{px}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{5 / 2} \mathrm{re}^{-\mathrm{Zr} /(2 \mathrm{a})} \sin \theta(-\cos \phi)$
$=-\psi_{2 p x} O D D$
(c) $\psi_{2 \mathrm{~s}}+\psi_{2 \mathrm{px}}=1 /\left[4(2 \pi)^{1 / 2}\right](\mathrm{Z} / \mathrm{a})^{3 / 2} \mathrm{e}^{-\mathrm{Zr} /(2 \mathrm{a})}$

$$
x\{2-\mathrm{Zr} / \mathrm{a}+\mathrm{rZ} / \mathrm{a} \sin \theta \cos \phi\}
$$

$\mathrm{H}\left(\psi_{2 \mathrm{~s}}+\psi_{2 \mathrm{px}}\right)=\mathrm{H} \psi_{2 \mathrm{~s}}+\mathrm{H} \psi_{2 \mathrm{px}}=\mathrm{E}_{2} \psi_{2 \mathrm{~s}}+\mathrm{E}_{2} \psi_{2 \mathrm{px}}$
$=\mathrm{E}_{2}\left(\psi_{2 \mathrm{~s}}+\psi_{2 \mathrm{px}}\right) \quad$ Yes, eigenfunction
$\Pi\left(\psi_{2 s}+\psi_{2 \mathrm{px}}\right)=\Pi \psi_{2 \mathrm{~s}}+\Pi \psi_{2 \mathrm{px}}=\psi_{2 \mathrm{~s}}-\psi_{2 \mathrm{px}}$
neither even nor odd, no parity
We showed previously that when V is even, the wavefunctions of a system with non-degenergate energy levels must be of definite parity. Here, the $n=2$ level is degenerate, hence no definite parity.
7.26 For a hydrogen atom in a p state, the possible outcomes of a measurement of L_{z} are $-\underline{h}$, 0 , and $\underline{\mathrm{h}}$. For each of the following wavefunctions give the probabilities of each of these three results.
$L_{z} \psi_{2 \mathrm{pm}}=\mathrm{m} \underline{\mathrm{h}} \psi_{2 \mathrm{pm}}$; for a p state, $\mathrm{m}=-1,0,1$
Write ψ as a linear combination of eigenfunctions of L_{z}. The probability of getting a particular value when the property is measured is the square of the corresponding coefficient.

Probability of measuring property $i=\left|c_{i}\right|^{2}$
$1=\Sigma\left|\mathrm{c}_{\mathrm{i}}\right|^{2}$
(a) $\psi_{2 \mathrm{pz}}=\psi_{2 \mathrm{p} 0}=\mathrm{c}_{1} \psi_{2 \mathrm{p}-1}+\mathrm{c}_{2} \psi_{2 \mathrm{p} 0}+\mathrm{c}_{3} \psi_{2 \mathrm{p} 1}$
$\mathrm{c}_{1}=\mathrm{c}_{3}=0 . \mathrm{c}_{2}=1$
Probability of measuring $\underline{\mathrm{h}}$ is square of coefficient of $\psi_{2 \mathrm{p} 1}: 0$
Probability of measuring $-\underline{h}$ is square of coefficient of $\psi_{2 p-1}: 0$
Probability of measuring 0 is square of coefficient of $\psi_{2 p 0}: 1$.
Note: $c_{1}^{2}=c_{2}^{2}+c_{3}^{2}=1=0+1+0$
(b) $\quad \psi_{2 p y}=-\mathrm{i} / \sqrt{ } 2 \psi_{2 \mathrm{p} 1}+\mathrm{i} / \sqrt{ } 2 \psi_{2 \mathrm{p}-1}$

Probability of measuring \underline{h} is square of coefficient of $\psi_{2 p 1}$:

$$
\mathrm{H}_{\mathrm{i}} / \sqrt{ } 2{ }^{2}=(-\mathrm{i} / \sqrt{ } 2)(-\mathrm{i} / \sqrt{ } 2)^{*}=1 / 2
$$

Probability of measuring - \underline{h} is square of coefficient of $\psi_{2 p-1}$:

$$
\mathfrak{i} / \sqrt{ } 2{ }^{2}=(i / \sqrt{ } 2)(i / \sqrt{ } 2)^{*}=1 / 2
$$

Probability of measuring 0 is square of coefficient of $\psi_{2 p 0}: 0$
Note: $c_{1}{ }^{2}=c_{2}{ }^{2}+c_{3}{ }^{2}=1=1 / 2+1 / 2+0$
(c) $\quad \psi_{2 p 1}=c_{1} \psi_{2 p-1}+c_{2} \psi_{2 p 0}+c_{3} \psi_{2 p 1}$
$\mathrm{c}_{1}=0=\mathrm{c}_{2}, \mathrm{c}_{3}=1 \& \mathrm{c}_{1}{ }^{2}=\mathrm{c}_{2}{ }^{2}+\mathrm{c}_{3}{ }^{2}=1$
Probability of measuring $\underline{\mathrm{h}}$ is square of coefficient of $\psi_{2 \mathrm{p} 1}: 1$

Probability of measuring - $\underline{\mathrm{h}}$ is square of coefficient of $\psi_{2 \mathrm{p}-1}: 0$
Probability of measuring 0 is square of coefficient of $\psi_{2 p 0}: 0$.
($3^{\text {rd }}$ Ed.; like example, p. $185,5^{\text {th }}$ Ed.) Consider a particle in a nonstationary state in a onedimensional box of length L with infinite walls. Suppose at time t_{0} its state function is the parabolic function

$$
\psi\left(\mathrm{t}_{0}\right)=\mathrm{N} x(\mathrm{~L}-\mathrm{x}) \quad 0 \leq \mathrm{x} \leq \mathrm{L}
$$

where N is the normalization constant. If at time t_{0} we were to make a measurement of the particle's energy, what would be the possible outcomes of the measurement \& what would be the probability for each such outcome?

For a 1D particle in a box, $H=-\underline{h}^{2} /(2 m) d^{2} / d x^{2}$;
$\mathrm{V}=0(0 \leq \mathrm{x} \leq \mathrm{L}), \mathrm{V}=\infty(\mathrm{x}<0, \mathrm{x}>\mathrm{L})$
The complete set of eigenfunctions of the H operator for a 1D particle in a box are the ψ_{n}

$$
\begin{array}{lr}
\psi_{\mathrm{n}}=(2 / \mathrm{L})^{1 / 2} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) & 0 \leq \mathrm{x} \leq \mathrm{L} \\
\psi_{\mathrm{n}}=0 & \mathrm{x}<0, \mathrm{x}>\mathrm{L}
\end{array}
$$

Since $\psi\left(\mathrm{t}_{0}\right)$ is an arbitrary function, we can expand it in terms of the eigenfunctions of H :
$\psi\left(\mathrm{t}_{0}\right)=\Sigma \mathrm{c}_{\mathrm{n}} \psi_{\mathrm{n}}$, where $\mathrm{c}_{\mathrm{n}}=\left\langle\psi\left(\mathrm{t}_{0}\right) \mid \psi_{\mathrm{n}}\right\rangle$.
The probability of obtaining the eigenfunction E_{n} when making a measurement is $\left|c_{n}\right|^{2}$. Find c
n:
$\mathrm{c}_{\mathrm{n}}=\left\langle\psi\left(\mathrm{t}_{0}\right) \mid \psi_{\mathrm{n}}\right\rangle$
$=\int_{0}{ }^{L} \psi\left(\mathrm{t}_{0}\right) \psi_{\mathrm{n}} \mathrm{dx}=\int_{0}{ }^{\mathrm{L}} \mathrm{N} x(\mathrm{~L}-\mathrm{x})(2 / \mathrm{L})^{1 / 2} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \mathrm{dx}$
$=N(2 / L)^{1 / 2}\left\{L \int_{0}^{L} x \sin (n \pi x / L) d x-\int_{0}^{L} x^{2} \sin (n \pi x / L) d x\right\}$
$=N(2 / L)^{1 / 2}[L /(n \pi)]^{3}\left\{-(n \pi)^{2} \cos (n \pi)\right.$
$\left.+\left[(n \pi)^{2}-2\right] \cos (n \pi)+2\right\}$
$=N(2 / L)^{1 / 2}[L /(n \pi)]^{3} 2(1-\cos (n \pi))$

If $n=1,3,5 \ldots, \cos (n \pi)=-1$. If $n=2,4,6 \ldots, \cos (n \pi)=1$.
$\mathrm{c}_{\mathrm{n}}=\mathrm{N} 2^{3 / 2} \mathrm{~L}^{5 / 2} /(\mathrm{n} \pi)^{3}(1-(-1))=N 2^{5 / 2} \mathrm{~L}^{5 / 2} /(\mathrm{n} \pi)^{3}$, $\mathrm{n}=1,3,5 \ldots$,
$\mathrm{c}_{\mathrm{n}}=\mathrm{N} 2^{3 / 2} \mathrm{~L}^{5 / 2} /(\mathrm{n} \pi)^{3}(1-1)=0, \mathrm{n}=2,4,6 \ldots$,
Probability of measuring E_{n} is $\left|c_{n}\right|^{2}$.
$\left|\mathrm{c}_{\mathrm{n}}\right|^{2}=0, \mathrm{n}=2,4,6 \ldots$,
$\psi\left(\mathrm{t}_{0}\right)=\mathrm{Nx}(\mathrm{L}-\mathrm{x}), 0 \leq \mathrm{x} \leq \mathrm{L}$, is odd function
$\psi_{n}=(2 / \mathrm{L})^{1 / 2} \sin (n \pi x / L), \quad 0 \leq x \leq L$, is even $\&$ so doesn't contribute to $\psi\left(t_{0}\right)$
$\left|c_{n}\right|^{2}=N^{2} 2^{5} L^{5} /(n \pi)^{6}, n=1,3,5 \ldots$,
To evaluate c_{n} need normalization constant N :

$$
\begin{aligned}
& \left\langle\psi\left(t_{0}\right) \mid \psi\left(t_{0}\right)\right\rangle=\int_{0}^{L} N^{2} x^{2}(L-x)^{2} d x \\
& \quad=\int_{0}{ }^{L} N^{2} x^{2}\left(L^{2}-L x+x^{2}\right) d x \\
& =N^{2}\left(L^{2} \int_{0}^{L} x^{2} d x-2 L \int_{0}^{L} x^{3} d x+\int_{0}^{L} x^{4} d x\right) \\
& =N^{2}\left\{L^{2}\left(x^{3} / 3\right) b^{L}-2 L\left(x^{4} / 4\right) b^{L}+\left(x^{5} / 5\right) b^{L}\right\} \\
& =N^{2}\left\{L^{5} / 3-2 L^{5} / 4+L^{5} / 5\right\} \\
& =N^{2} L^{5}\{1 / 3-2 / 4+1 / 5\}=N^{2} L^{5} / 30=1, \text { if } N=\operatorname{SQRT}\left(30 / L^{5}\right) \\
& \left|c_{n}\right|^{2}=\left(30 / L^{5}\right) 2^{5} L^{5} /(n \pi)^{6}, n=1,3,5 \ldots, \\
& \quad=(30)(32) /(n \pi)^{6} \\
& \left|c_{1}\right|^{2}=(30)(32) /(\pi)^{6}=0.99855 \\
& \left|c_{3}\right|^{2}=(30)(32) /(2 \pi)^{6}=0.001370 \\
& \left|c_{5}\right|^{2}=(30)(32) /(4 \pi)^{6}=0.000064
\end{aligned}
$$

Most of the contribution comes from ψ_{1} because it losely resembles $\psi\left(\mathrm{t}_{0}\right)$--See Fig. 7.3, p. 186, $5^{\text {th }} \mathrm{Ed}$.

