PROBLEM SET SOLUTIONS

CHAPTER 1, Levine, Quantum Chemistry, $5^{\text {th }}$ Ed.
1.12 Which of the following functions meet ALL the requirements of a probability density function ($\mathrm{a} \& \mathrm{~b}$ are positive constants)?

The requirements for a probability density function (i.e. $|\psi|^{2}$) are that it is normalized (i.e. $\int_{-\infty}^{\infty}|\psi|^{2} \mathrm{dx}=1$), real (i.e. , $|\psi|^{2}$ is real) \& non-negative (i.e. $|\psi|^{2}$ is non-negative). Do these functions meet the above conditions?
(a) No - $e^{\text {iax }}$ is not real
(b) No - $x \exp \left(-b x^{2}\right)$ can be negative
(c) No $-\exp \left(-b x^{2}\right)$ is not normalized:

$$
\int_{\infty}^{\infty} \exp \left(-b x^{2}\right) d x=2 \int_{0}^{\infty} \exp \left(-b x^{2}\right) d x=2(1 / 2) \operatorname{SQRT}((\pi / b))=\operatorname{SQRT}((\pi / b))
$$

1.22 Find the absolute value \& phase of the following functions.

Use $r=$ absolute value $=|z|=\operatorname{SQRT}\left(x^{2}+y^{2}\right)^{2}, z=x+i y, \theta=$ phase, $\tan \theta=y / x, x=r \cos \theta, y$ $=r \sin \theta$.
(a) $\mathrm{z}=\mathrm{x}+\mathrm{i} y=\mathrm{i} \Rightarrow \mathrm{x}=0, \mathrm{y}=1$. Sor $=\left(0^{2}+1^{2}\right)^{(1 / 2)}=\operatorname{SQRT}(1)=1 \cdot \tan \theta=\mathrm{y} / \mathrm{x}=1 / 0=\infty \Rightarrow$ $\theta=90^{\circ}=\pi / 2$
(b) $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}=2 \exp (\mathrm{i} \pi / 3)=2[\cos \pi / 3+\mathrm{i} \sin \pi / 3]=2(1 / 2+\mathrm{iSQRT}(3) / 2) \Rightarrow \mathrm{x}=1, \mathrm{y}=$ $\operatorname{SQRT}(3)$. So $r=(1+3)^{(1 / 2)}=(4)^{(1 / 2)}=|2| \cdot \tan \theta=\operatorname{SQRT}(3) /(1)=\operatorname{SQRT}(3) \Rightarrow \theta=\pi / 3$
(c) $(\mathrm{c}) \mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}=-2 \exp (\mathrm{i} \pi / 3)=-2[\cos \pi / 3+\mathrm{i} \sin \pi / 3]=-2(1 / 2+\mathrm{iSQRT}(3) / 2) \Rightarrow \mathrm{x}=-1, \mathrm{y}$ $=-\operatorname{SQRT}(3)$. So $r=(1+3)^{(1 / 2)}=(4)^{(1 / 2)}=|2| \cdot \tan \theta=\operatorname{SQRT}(3) /(1)=\operatorname{SQRT}(3) \Rightarrow \theta=\pi / 3$
(d) $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}=1-2 \mathrm{i} \Rightarrow \mathrm{x}=1, \mathrm{y}=-2 . \mathrm{r}=\left(1^{2}+(-2)^{2}\right)^{(1 / 2)}=\operatorname{SQRT}(5), \tan \theta=\mathrm{y} / \mathrm{x}=-2 / 1=-2, \theta$ $=\tan ^{-1}(-2)=296^{\circ} 27^{\prime}$

