PROBLEM SET SOLUTIONS

CHAPTER 1, Levine, Quantum Chemistry, 5th Ed.

1.12 Which of the following functions meet ALL the requirements of a probability density function (a & b are positive constants)?

The requirements for a probability density function (i.e. $|\psi|^2$) are that it is normalized (i.e. $\int_{-\infty}^{\infty} |\psi|^2 dx = 1$), real (i.e. $|\psi|^2$ is real) & non-negative (i.e. $|\psi|^2$ is non-negative). Do these functions meet the above conditions?

- (a) No e^{iax} is not real
- (b) No $x \exp(-bx^2)$ can be negative
- (c) No $\exp(-bx^2)$ is not normalized:

 $\int_{\infty}^{\infty} \exp(-bx^2) \, dx = 2 \int_{0}^{\infty} \exp(-bx^2) \, dx = 2 (1/2) \, \text{SQRT} ((\pi/b)) = \text{SQRT} ((\pi/b))$

1.22 Find the absolute value & phase of the following functions.

Use $r = absolute value = |z| = SQRT (x^2 + y^2)^2$, z = x + i y, $\theta = phase$, $\tan \theta = y/x$, $x = r \cos \theta$, $y = r \sin \theta$.

- (a) $z = x + i \ y = i \implies x = 0, \ y = 1$. So $r = (0^2 + 1^2)^{(1/2)} = SQRT(1) = 1$. $\tan \theta = y/x = 1/0 = \infty \implies \theta = 90^\circ = \pi/2$
- (b) $z = x + i y = 2 \exp(i\pi/3) = 2 [\cos \pi/3 + i \sin \pi/3] = 2 (1/2 + i SQRT(3)/2) \Rightarrow x = 1, y = SQRT(3).$ So $r = (1 + 3)^{(1/2)} = (4)^{(1/2)} = |2| \cdot \tan \theta = SQRT(3)/(1) = SQRT(3) \Rightarrow \theta = \pi/3$
- (c) (c) $z = x + i y = -2 \exp(i\pi/3) = -2 [\cos \pi/3 + i \sin \pi/3] = -2 (1/2 + i SQRT(3)/2) \Rightarrow x = -1, y = -SQRT(3).$ So $r = (1 + 3)^{(1/2)} = (4)^{(1/2)} = |2|$. $\tan \theta = SQRT(3)/(1) = SQRT(3) \Rightarrow \theta = \pi/3$

(d) $z = x + i y = 1 - 2i \Rightarrow x = 1$, y = -2. $r = (1^2 + (-2)^2)^{(1/2)} = SQRT$ (5), $\tan \theta = y/x = -2/1 = -2$, $\theta = \tan^{-1}(-2) = 296^{\circ}27'$