PROBLEM SET SOLUTIONS

CHAPTER 4, Levine, Quantum Chemistry, 5th Ed.

4.12 For the ground state of the one-dimensional hrmonic oscillator, find the average value of the kinetic energy and of the potential energy. Verify that <T> = <V>.

y 0 = (a /p )1/4 e-(a x**2/2)

T = -h2/(2m) d2/dx2

V = k x2/2 = 2p 2n 2mx2 = a 2 h2x2/(2m)

dy 0 /dx = (a /p )1/4 (-a /2) (2x) e-(a x**2/2)

d2y 0 /dx2 = (a /p )1/4 (-a ) d/dx [x e-(a x**2/2)]

= (a /p )1/4 (-a ) [e-(a x**2/2) + x (-a /2) (2x) e-(a x**2/2)]

= (a /p )1/4 (-a ) [1 - a x2] e-(a x**2/2)

<T> = ò -¥ ¥ y 0* T y 0 dx

= ò -¥ ¥ (a /p )1/4 e-(a x**2/2) [-h2/(2m) d2/dx2] (a /p )1/4 e-(a x**2/2)

= (a /p )1/2 (a ) [h2/(2m)] ò -¥ ¥ e-a x**2 (1 - a x2) dx

= (a /p )1/2(a ) [h2/(2m)][ ò -¥ ¥ e-a x**2 dx - a ò -¥ ¥ x2e-a x**2 dx]

= (a /p )1/2a [h2/m][ ò 0 ¥ e-a x**2 dx - a ò 0 ¥ x2 e-a x**2 dx]

= (a /p )1/2a [h2/m][ (1/2) (p /a )1/2 - a (1/4) (p /a 3)1/2]

= (a /p )1/2a [h2/m][ (1/2) (p /a )1/2 - (1/4) (p /a )1/2]

= a h2/(4m)

 

<V> = ò -¥ ¥ y 0* V y 0 dx

= ò -¥ ¥ y 0* [h2/(2m)] (a 2 x2) y 0 dx

= a 2[h2/(2m)] (a /p )1/2 ò -¥ ¥ x2 e-a x**2 dx

= a 2[h2/m] (a /p )1/2 ò 0 ¥ x2 e-a x**2 dx

= a 2[h2/m] (a /p )1/2 (1/4) (p /a 3)1/2

= a h2/(4m) = <T>

NOTE: a h2/(4m) = [2 p n m/ h] [h2/(4m)] = hn /4

 

4.16 For the v = 1 harmonic oscillator state, find the most likely position(s) of the particle.

Most likely position occurs when the probability density is a maximum:

P = y 1* y 1 = (4a 3/p )1/2 x2 e-a x**2

Set dP/dx = 0 & find x:

dP/dx = 0 = 2x e-a x**2 + x2 (-a 2x) e-a x**2

= 1 - a x2

x = + 1/Ö a

    1. Find <x> for the harmonic oscillator state with quantum number v.

<x> = ò -¥ ¥ y *x y dx

 

v = 0: y 0 = c0 e-a x**2/2 even function

<x> = ò -¥ ¥ y 0 *x y 0 dx

y 0 *x y 0 = (even) (odd) (even) = odd

<x> = ò -¥ ¥ odd dx = 0

 

v = 1: y 1 = (4a 3/p )1/4 x e-a x**2/2 odd function

<x> = ò -¥ ¥ y 1 *x y 1 dx = (4a 3/p )1/2 ò -¥ ¥ e-a x**2 x3 dx

= (4a 3/p )1/2 ò -¥ ¥ (even) (odd) dx

= (4a 3/p )1/2 ò -¥ ¥ (odd) dx = 0

v = 2: y 2 = (a /(4p ))1/4 (2a x2 -1) e-a x**2/2

<x> = ò -¥ ¥ y 2 *x y 2 dx = (a /(4p ))1/2 ò -¥ ¥ (2a x2 -1)2 x e-a x**2 dx

= (a /(4p ))1/2 ò -¥ ¥ (even) (odd) (even) dx

= (a /(4p ))1/2 ò -¥ ¥ (odd) dx = 0 & etc. for higher v

    1. (A) The v = 0 ® band of LiH occurs at 1359 cm-1. Calculate the ratio of the v = 1 to v = 0 populations at 25oC and at 200oC.

n = 1/ l = 1359 cm-1

Ev = (v + 1/2) hn ; n = c/l = c n

E0 = (0 + 1/2) hn = hn /2

E1 = (1 + 1/2) hn = 3 hn /2

E1 - E0 = hn

N1/N0 = e-(E1 - E0)/kT = e-hn /(kT); degeneracy = 1

T = 25oC = 298K:

hn /(kT) = (6.63x10-34 Js) (3.00x108 m/s)

x (1359 cm-1)/[1.38x10-23J/K) (298K)] = 6.57

N1/N0 = e-6.57 = 1.402x10-3

 

T = 200oC = 473K: hn /(kT) = 6.57 (298/473) = 4.14;

N1/N0 = e-4.14 = 0.016 Higher relative population at higher T

4.27 (B) Do the same for ICl whose strongest infrared band occurs at 381 cm-1.

T = 298K: hn /(kT) = 1.84, N1/N0 = e-1.84 = 0.16

T = 473K: hn /(kT) = 1.16, N1/N0 = e-1.16 = 0.31

Heavier molecule has higher relative population

 

4.24 (A) The infrared absorption spectrum of 1H35Cl has its strongest band at 8.65x1013 Hz. Calculate the force constant of the bond in this molecule.

n = (k/m )1/2/2p ; k = m 4p 2n 2

m = mH mCl/(mH + mH) = (1.00) (35.0)/ (36.0) amu

=0.972 amu (1 g / 6.023x1023 amu) = 0.161x10-23 g

k = (0.161x10-23 g) (4p 2) (8.65x1013 Hz)2 1 Hz = 1 s-1

= 4.75x105 g/s2

= 4.75x105 dyn/cm (10-8 cm/1 Angstrom)

= 4.75x10-3 dyn/ Angstrom

= 4.75 millidyn/ Angstrom

(B) Find the approximate zero point vibrational energy of 1H35Cl.

E0 = (0 + 1/2) hn = hn /2 = (6.63x10-34 Js) (8.65x1013 Hz)/2

= 2.87x10-20 J