PERTURBATION THEORY

Skip Degenerate Perturbation Theory, Sect. 9.5, 9.6, 9.7,

Time-Dependent Perturbation Theory 9.9 & Interaction of

Radiation with Matter, 9.10

Perturbation Theory ia method ofpproximatiomot limited to

the ground state of a system. Ituseful when we know a
solution to a similar problem which wecan use as dirst

approximation to the problem that mbst solved.Let's say we
want to solve the Schrodinger Eq.

H Yy = Eyyy,

where N=state of the system\=0, ground state; N=1fjrst
excited state, etc.

Let’s say we know the solution to a similar problem
H® Y’ = B\’
where H is very similar to H such that
H=H+H,
where His small. Assume that:
H° is Hermitian
Its eigenfunctiong,’,are orthonormal.

We can use thgy,” to find they,.



Example: Harmonic Oscillator

One-dimensionainharmonic Oscillator has

H = -b/(2m) {d¥dx’} + k x%/2 + c ¥+ d ¥
One-dimensionaHarmonic Oscillator has

HO = -k/(2m) {d¥dx?} + k x%/2

If ¢ & d aresmall,then theeigenfunctions & eigenvalues of the
anharmonicoscillator must beclosely related tothose of the
harmonicoscillator--which weknow. But how can we usthis
information? Wecan expand th&avefunction &energy of the
anharmonic oscillator in a Taylgeriesaround thewvavefunction
& energy that we know.

Define the system with M as theunperturbed system & the
with H as theperturbed system.

H=H+ H
H'=H - H = ¢ X3+ d X for the anharmonic oscillator

Introduce the parameter\, the perturbation parameter.
Essentially A is usedfor “bookkeeping”. The following is the

use of perturbation theoryfor nondegenerate energkevels
(degenerate levels will not be covered due to lack of time).

Let

P,° = wavefunction of the unperturbed nondegenerate level N

E\" = energy of the unperturbed nondegenerate level N



W - Wy & E\° - E, when the perturbation is applied.
We want to solve

H Wy = (H” + AHY) Wy = By
Since H depends on £ & Y, will too.

Expand ), in a Taylor Series arounp’ (i.e. {J, evaluated ah
= 0, orgHy=o):

Py = YyOaoo + OW/ON) T, oA + (02 /ON) O, _[A%/2! +
(03P JON3) O, R33! + ...
= 0 + (O /ON) O, oA + (0% /ON3) O, AY/2! +
(03P, JON3) O, R33! + ...
Also expand Ein a Taylor Series around,E
Ey = E\Oy-o + (0E/ON) 0, & + (0°Ey/ON?) 0, _,[A%/2! +
(O°EN/ON) O, A%3! + ...
= E + (OE/ON) O, & + (0%E,/OND),_,A%/2! +
(OPEN/ON®) O, A%3! + ...
Define Y~ = (0 W, /ON) O, _/K!
E\f = (0*E/ON) O, _/k!

Then
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Ey=E+AE M+ N EZ+NES+ ...
Substitute these expansions into
H Wy = (H”+ AHY) Wy = By -
(H? +AHY) (W + A gyt + A2 P+ A + )

= (B HAESHNESH L) W AP AT P L)
Collect terms in\:
HOP L+ A (HOPt+ HUYO) + A2(HOg 2 + H Y + ...

= B+ A (B + B

FN(ES U+ Bl B2 + .

If the left side equaldhe rightside, then theleft & right sides

must beequalfor each power of A. Thisgives thePerturbation
Eq.:

N HC = B (1)
Mo HO T HIC = B B

(H°- B\ W= (Bt - HY) g 2)
N HW + H = B B B2,

(H- B, W= B+ (Bt - HY) ! 3)
etc.

Eqg. (1) isthe Schrddinger Edor the unperturbegroblem. We
alreadyknow thesolutionsy,’ & E,°. We can use these to



solve Eq.(2) for E\', thefirst order correctiorto the energy, &
v the first order correction tilve wavefunction.At this point,
we will have improved our approximation tQ:E
Ey=ES+ E5N A=1
Wy= P+ Pt A=1
Solve Eq. (2):
(H°- BE°) Uy'= (B' - H) g,
Solve for E*

Since H is Hermitian,then they,” are acomplete set. So we
can expand the unknowp)' in terms of thap,’. Let

Py'= Z 3 L|Jj0
Then  (H-E) Zgy’=(§'-H) Yy
=23 (H"- E) ¢

=3 gH%’ - ZaEyY,’
i i



=2 3B - ZaE Y’
= ZIQ(Ej °-E) L|Jj0: (E' - HY @’

We want tocalculate E*. Multiply both sides by ¢,.%" &
integrate over the spatial coordinates:

JWW) 2 4 (E; °-E) LIJjO dt

=] (meo)* (Ex'- HY LI—’NOdT
Z 3 (g *-EO W) LIJjO dt
=] (LIJmO)* E\' LIJNOdT - (quo)* H* qJNOdT

2 §(E°- E\)0m = Ey' On - J (W) H W°dt
j

an (En°- E\°) = By Oy - Huw'
If m=N, we can calculate E*:

0=E'- Hy'

E.'= Hy' (Note: Don't needp,'to get E*)
If misnot equal to N, we can calculate y*:

an(En”- B) = - Ha'

an = - Hon'/(En” - BY°) = Ho/(BEn° - By)
Since Y'=Z a Y’



i
from the above we know thferm of all the @'s except . We
canset@a=0. So

Wn'= Z [HY(Ey°- EO] @
jnot=N
And
Py = l~|—’No + L|—’N1’ A=1

=P ° + Z [H(Ey - EO] ¢

jnot=N

Solve for E,*
Expandy,? in terms of they,°

l'IJN2: Z bj L|Jj0
J

Then (M- E) By?= BARO+ (B - HY) Byt
becomes

(H?- BE) Z b 4= B+ (B - H) Wy
> by (HWL- B
> b (B - BW)
2

b (§°- B) ¢

Multiply both sides by ¢.°)° & integrate over the spatial
coordinates:

[We) Zh(E°- E) g dt



= By (W) W dt + [ (U)" (By' - HY) Wyt
The X below stands for the sum over |:
20 (5°- BO) S W) P dt

= BT (W) Wy dt + B (U)W dr

-J (W) H gt

2 b (E °- E) Opj

= By®0mn + BT (W) Wyt dT- (W) HE Wt e
b, (E,°- E\")

= B\ 0mn + BT (W) Wyt dU- (W) HE Wyt e
If m=N, we can calculate E,*
By = By (W°) Bt At +] (W) H gyt dt
Note: to get the second ordeorrection tothe energy weonly
need to know thdrst order correctiorio the wavefunction. In

general, we can calculate®* from knowingy,*

Can we simplify §*? We must evaluafgy,’)” y,* dt. But

P'=3 3 quO

j not equal to N
and a=H,(E\°-E, g =0.

TheZ below stands for the sum over j not equal to N:



Sof (W\) Wy dt =J (Y\") Z g Yt
=2 g/ (Y)Y dr
=2 g0y
= 0 since j cannot be equal to N.
Therefore
Ey® = J () H gyt dr
Using the definition of*
By =JW") H'Z gy’



Ey=E°+Hy' +2 DHleDZI(ENO - EJ-O)

jnotequalto N

We could continue in theame method as abo\&ayleigh-
Schrodinger PerturbationTheory) to higher order of
perturbation. Butow do you know when to stop? Does the
perturbation seriesonverge? ExpediE,’d> OE'0 > UEC
>

What does the perturbation procedure actually do?

Sincey,* is expanded in terms af, % for k not equalo N,
the effect ofthe procedure i$0 addinto first order those states
from the complete sethat were left out of zeroth order. But
they aren’t added in with equal weight to thatjgf (i.e. 1), but
rather with weight aSince

a 0 1/(E,- E)

the terms which have,Eclose to ° will cause 1/(g° - E°)
to be large & therefore result i larger contribution from the
states close to N.

Practical Considerations:

(1) Eis easy to evaluate since omly’is used in
Hu' =1 (W°) H @ ° dt

(2) E? is difficult to evaluatebecause you would need the
complete set OﬂJjo (except j=N). This is aninfinite number of
terms! If you have dlamiltonianthat supports botdiscrete &
continuous states, asgith the hydrogen atom, then you must
includenot onlythe sum oveall discrete statefut theintegral
over all the continuoustates, asvell. This isimpossible to do



exactly. Instead youcould use a combination variation-
perturbation treatment.

Perturbation Treatment of the Ground State of He (we will
also do a Variation treatment)

He has 2 protons & electrons. The nucleushas a charge of
+2e & eachelectron has acharge of -e. Electrons are
indistinguishableparticles,but we will number them to keep
track of them. Electron #1 is at distance from the nucleus;
Electron #2 is at distance from the nucleus. The distance
between the twaelecrons is . Let us seup theproblem to
treat ageneraltwo-electronion by using a nucleacharge of
+Ze. Then
H=-1/(2m) 0,2- Z(e)% r,- b?/(2m) O,%- Z(e')? r+(e’) ¥ ry,
In spherical polar coordinates

W= (ry, 0, @, 1, 6, @)

ro= [(X- X9) 2 + (Y1- Yo) 2+ (z- 2) Y7

Let H,° be thehydrogen-likeHamiltonian forelectron#1; Let
H.? be the hydrogen-like Hamiltonian for electron #2:

H.°=-/(2m)0,2- Z(e)¥ r; E;= -(Z4NA(e) ¥(2a)

H,Y =-K/(2m)0,%- Z(e)? r,; E,= -(Z?IN,?)(e') (28,
where

H°F (r, 8, @) =EF,(y,6, @)

H.Y F,(r,, 6,, @) = E,F, (I, 0,, )



and F & F, are thehydrogen-likewavefunctions & E & E, are
the hydrogen-like energies.

Define H=H,° + H.,°.

If the Hamiltonian is asum of two Hamiltonians, then the
wavefunction is a product of their eigenfunctions:

WO (ry, 8y, @, 1y, 8, @) = F(ry, 8, @) Fy (12, 6,, @)
Then

HY°= (H° + H,%) F, F,

=F Hlo F+ |:1Hzo F,

=R E R +REF

=(EE+E)FRF

= EY°, E'=E + E= -(Ze")? /(2a)(1 /N + 1 /N,?)
The assumption inhis choice of H is that the twoelectrons
exert norepulsive force oneach other(i.e. they operate as
independent particles)T'his is notphysicallycorrect, but can be
used as a first approximation.
In the ground state dfelium,both electronsre in the 1srbit,
but have oppositepins. Indicatethe electronic configuration by

1s?% So the zeroth-ordempproximationto the ground state
wavefunction can be given

quseO =F F,



F,= INTT (Z/a,)*? e/

F,= INTT (Z/a)** e*'/4

E.C=-(Ze)?%/(2a)1 /2 + 1 /P
= -[(ze’) * 1(2a)](2); (€)*/(28) = 13.6 eV
=-(4) (2)(13.6eV)forHe
= -108.8eV for He.

How does this compare to the actual ground state energy of He?
He has E = 0 when both electrons have been ionized, So
E,..= -(IP* + IP%); IP = ionization potential

=-(24.6 eV +54.4eV)=-79.0eV

S0 -108.8 eV is off by 38%! This is not unexpected because the
perturbation

H'=H-H=(e)%ry,
is not necessarily small. Wheyig close to 4, ()7 ry, is large.
Let's see what improvement we can get by calculating E
E'= <y’ H' %
= Z%(e)(1Pa°) [° Jo* Jo" Jo'Jo™ o™ 1171, €% /2e 2 (1)
[5in©,sin6,dr, dr, d8, do, dg, dg,



1/r;, can be expanded in terms aof & r, & the Spherical
Harmonics, Y"(0,):

Ur, =32 Z [410(21+1)] (r/ 67 [Y"(0,0 )1 [Y "(6.,9))],
where tis the smaller of & r, & r. is the larger of 1 & r..
Skim through thedetails ofhow theintegral isdone (p. 230-
231). The resultis
E! = (52/8) (e'¥/a,

= (5Z/4) (e'¥/(2a)

= (5x2/4) (13.6eV)

=34.0 eV
SoP+E'=-108.8eV +34.0eV =-74.8 eV
Compared to -79.0 eV, this is in error by only 5.3%.
It is impossibleto calculateall the contributionsto E? from the
discrete & continuum state€Othercombinations of F& F, are
Ff 1s, b =2s, 2p, 3s, 3p,...,F 2s, B = 2s, 2p, 3s3p,..., etc.
) is a sum oveall these discretstates, asvell asthe integral

over all the continuumstates. Sinc@? containsconfigurations
other than 1% this is calledConfiguration Interaction.

However, we can get an accuratély the Variation Method.
Hylleraas has shown that

| > B2

for | defined as



=] (@) (H-E) ¢ dt+[(¢) (H-E)p°dr
W) H-E) ¢t dt

where @' is a trialfunction for @*. (Note: If * = ?, then the
first two terms cancel since

(H°- E) ¢* = -(H' - EY) ¢°.
If @' = *, then | =[ (Y°) (H'- EY) @' dt
=[ (W) [E*° - (H° - ) y]dt
=B ()P’ dt = E)
So choose #ial function @' with severalvariableparameters &
n12inimize | with respect to theg@mrameters so @8 approximate
E-.

Scherr & Knight used 100Qariables in theitrial function &
calculated

E°=-43eV &E= 0.1eV
Then E= (-108.8 + 34.0 -4.3 +0.1) eV = -79.0 eV
The series is converging becal#€'[]decreases as n increases.
To 13th order in perturbation,£-2.903 724 33 (e¥a,;
From a variational calculation,£-2.903 724 38 (e%a,.
Comparison of Variation & Perturbation Methods:

Let's compare thevariation & peturbationmethods: Actually
we would get the same energy correct throtigst order if we



used the ground stateavefunction aghe trial function. Show
that this is true:

Perturbation Method:

LetH=H+H & H°y = E,°y,° g = ground state
Define E,= Eg0 + E,' (truncate energy at first order)
Eglz <LIJgoD Hl|IIJ g0>



Variation Method:

| = <@[HIp > > E,
If o=y, then | = @S OHL >

= <P LOH+ H [ >

— <l-|JgO|:| H0E|J gO> + q-IJgOD Hl IIIJ gO>

— <L|J90D EgOmJ gO> + <l~|Jg0|:| Hl ElJ g0>

— Ego<L|JgOE|J g0> + <LIJ90|:| Hl IIIJ gO>

— EgO + Egl
So theperturbation &variation methodsgive the sameresult
through first order if the true ground state wavefunction happens
to be used as the trial function.

Variation Treatment of the Ground State of Helium

Let's compareresults (energy) for different choices of trial
function.

Choice (1): We saw above thatiif® = Y,

= INTT (Z/ay)*? %/ 1NT (Z/ay)*?e* />
then the energy is -74.8 eV
Choice (Il): Try making thetrial function more flexible by

replacingthe atomicnumber, Z, by avariational parameterp.
This allows forthe screening of the nucleaharge by the other




electrons. (Full nuclear charge corresponds tg=2; full
screeningp=2-1=1)

Optimize | with respect tp, the effective nuclear charge.

| = <p[Hp >
Choosep =ff,
where = 1NTI(p/a,)*?eP™

f,= 1INTI (p/ay)**eP/a

and [-1¥/(2m) 0.2 - p (e) %r]f,= -p%e) ¥(2a) f,

[-h%(2m) 0, - p (") *Ir.If .= -p*(e") ¥(2&) T,
We cansimplify the calculation if wewrite H to contain the
Hamiltonians fortheseeigenfunctions. Wenust add & subtract
terms inp so that we still have the He atom Hamiltonian.
H=-H/(2m) 0,%- Z(e')% r.- b?/(2m) O,%- Z(e')? r+(e’) ¥ ry,
= [-h(2m) 0.2 - p (€’) ¥r ] + [-h¥(2m) 0.2 - p (e') ¥r,]

+ (0 -2) (€)¥ry+ (p-2) (e)r, +(e') 1y,
Then Hp=H ff,
= f,[-h¥/(2m) 0.2 - p (e') ¥r] T+ f,[-h%(2m) 0.2 - p (€") ¥r,) 1,

+{(p-2) (€)r+ (p-2) (&), +(e") % 115} fof

Skim through the details of the integration, which shows that



| = <pTH > = (p°- 2Zp + 5p/8) (e") /3,
01/0p=0- 2p-2Z+5/8=0- p=2Z-5/16

Since Z>p >Z-1,p is a screening parameter.
Evaluate | with this value @ to get the energy:
| = [(Z - 5/16)%- 2Z(Z - 5/16) + 5(Z - 5/16)/8] (eJa,
=-77.7 eV for Z=2 (1.9% error)

(Remember (I) with Z-2 was in error by 5.3% when maas
used.)

Choice (1l1): Letg = g(1) g(2). No matter what thehoice of g

IS, we can’t get the energy to be closer than 1.4% from the exact
energy because has the wrondunctional form. InHe, the
electrons arenot truly independenbecause of the 1Ak term.
Therefore, the Schrédinger Eq. is not really separable.

Choice IV: Use afunction that depends on 4 allows electron
motion to be correlated.

Hyllaraas:@ = N[eP/2e®72(1 +br,,)]

Vary p,b to getp = 1.849, b = 0.364l, = -78.7 eV (off by 0.3
eV)

Choice V: Allow even more flexibility; Hylleraas:

= e’lreP/a 3 Cij (ry+ L) (rp- r) 1y
i,j,k

Results in | off by only 0.01 eV



Choice VI: Same as V, but more terms (1,078 terms- Pekeris)

| =-2.903 724 375 (¥a, -

lonization energy = 198 310.69 ¢m
Experimental ionization energy = 198 310.82cm
Very good agreement.

SUMMARY OF METHODS:

Variation Method Perturbation Theory
Applicable to ground & Applicable to all states
first few excited states
Easy to evaluate integrals Hard to evaluate infinite
because have chosen the sums over discrete states &
form of the trialfunction integrals over continuum

states necessary to the evalu-
of second & higher-order
corrections

A poor trial function can ¥ - E**
give an accurate energy

Other properties are not Other properties are not
calculated with the same calculated with the same
accuracy as the energy accuracy as the energy



