
PERTURBATION THEORY

Skip Degenerate Perturbation Theory, Sect. 9.5, 9.6, 9.7;
Time-Dependent Perturbation Theory 9.9 & Interaction of
Radiation with Matter, 9.10

Perturbation Theory is a method of approximation not limited to
the ground state of a system.  It is useful when we know a
solution to a similar problem which we can use as a first
approximation to the problem that must be solved.  Let’s say we
want to solve the Schrödinger Eq.

H ψN = E NψN,

where N=state of the system; N=0, ground state; N=1, first
excited state, etc.

Let’s say we know the solution to a similar problem

H0 ψN
0
 = E N

0ψN
0,

where H0 is very similar to H such that

H = H0 + H1,

where H1is small. Assume that:

H0 is Hermitian

Its eigenfunctions, ψN
0,are orthonormal.

We can use the ψN
0 to find the ψN.



Example: Harmonic Oscillator

One-dimensional Anharmonic Oscillator has

H = -h2/(2m) {d2/dx2} + k x2/2 + c x3 + d x4

One-dimensional Harmonic Oscillator has

H0 = -h2/(2m) {d2/dx2} + k x2/2

If c & d are small, then the eigenfunctions & eigenvalues of the
anharmonic oscillator must be closely related to those of the
harmonic oscillator--which we know.  But how can we use this
information? We can expand the wavefunction & energy of the
anharmonic oscillator in a Taylor series around the wavefunction
& energy that we know.

Define the system with H0 as the unperturbed system & the
with H as the perturbed system.

H = H0 + H1

H1 = H - H0 = c x3 + d x4 for the anharmonic oscillator

Introduce the parameter λ, the perturbation parameter.
Essentially, λ is used for “bookkeeping”.  The following is the
use of perturbation theory for nondegenerate energy levels
(degenerate levels will not be covered due to lack of time).

Let 

ψN
0 = wavefunction of the unperturbed nondegenerate level N

EN
0 = energy of the unperturbed nondegenerate level N



ψN
0 → ψN & EN

0 → EN when the perturbation is applied.

We want to solve

H ψN = (H0 + λH1) ψN = ENψN

Since H depends on λ, EN & ψN will too.

Expand  ψN in a Taylor Series around ψN
0 (i.e. ψN evaluated at λ

= 0, or ψN λ=0):

ψN = ψN λ=0  + (∂ψN/∂λ) λ=0⋅λ + (∂2ψN/∂λ2) λ=0⋅λ2/2! +

(∂3ψN/∂λ3) λ=0⋅λ3/3! + ....

= ψN
0 + (∂ψN/∂λ) λ=0⋅λ + (∂2ψN/∂λ2) λ=0⋅λ2/2! +

(∂3ψN/∂λ3) λ=0⋅λ3/3! + ....

Also expand EN in a Taylor Series around EN
0

EN = EN λ=0  + (∂EN/∂λ) λ=0⋅λ + (∂2EN/∂λ2) λ=0⋅λ2/2! +

(∂3EN/∂λ3) λ=0⋅λ3/3! + ....

= EN
0
  + (∂EN/∂λ) λ=0⋅λ + (∂2EN/∂λ2) λ=0⋅λ2/2! +

(∂3EN/∂λ3) λ=0⋅λ3/3! + ....

Define ψN
k = (∂kψN/∂λk) λ=0/k!

EN
k = (∂kEN/∂λk) λ=0/k!

Then
ψN = ψN

0 + λ ψN
1 + λ2 ψN

2 + λ3 ψN
3 + ...



EN =EN
0 + λ EN

1 + λ2 EN
2 + λ3 EN

3 + ...

Substitute these expansions into

H ψN = (H0 + λH1) ψN = ENψN →

(H0 + λH1) (ψN
0 + λ ψN

1 + λ2 ψN
2 + λ3 ψN

3 + ...)

= (EN
0 + λ EN

1 + λ2 EN
2 + ...) (ψN

0 + λ ψN
1 + λ2 ψN

2+ ...)

Collect terms in λ:

H0ψN
0 + λ (H0ψN

1 + H1ψN
0) + λ2(H0ψN

2  + H1ψN
1) + ...

= EN
0ψN

0 + λ (EN
1ψN

0 + EN
0ψN

1)

+ λ2(EN
0ψN

2 + EN
1ψN

1 + EN
2ψN

0) + ...

If the left side equals the right side, then the left & right sides
must be equal for each power of λ.  This gives the Perturbation
Eq.:

λ0: H0ψN
0 = EN

0ψN
0 (1)

λ1: H0ψN
1 + H1ψN

0 = EN
1ψN

0 + EN
0ψN

1

(H0 - EN
0) ψN

1 = (EN
1 - H1) ψN

0 (2)

λ2: H0ψN
2  + H1ψN

1 = EN
0ψN

2 + EN
1ψN

1 + EN
2ψN

0

(H0 - EN
0) ψN

2 = EN
2ψN

0 + (EN
1 - H1) ψN

1 (3)

etc.

Eq. (1) is the Schrödinger Eq. for the unperturbed problem. We
already know the solutions ψN

0 & EN
0.  We can use these to



solve Eq. (2) for EN
1, the first order correction to the energy, &

ψN
1, the first order correction to the wavefunction.  At this point,

we will have improved our approximation to EN:

EN ≈ EN
0 + EN

1, λ=1

ψN ≈ ψN
0 + ψN

1, λ=1

Solve Eq. (2):

(H0 - EN
0) ψN

1 = (EN
1 - H1) ψN

0

Solve for EN
1

Since H0 is Hermitian, then the ψN
0 are a complete set.  So we

can expand the unknown ψN
1 in terms of the ψN

0. Let

ψN
1 = Σ aj ψj

0

       j

Then (H0 - EN
0) Σ aj ψj

0 = (EN
1 - H1) ψN

0

                               j

= Σ aj (H
0 - EN

0) ψj
0

                            j

= Σ aj H
0ψj

0  -  Σ ajEN
0ψj

0

                            j                                               j



= Σ aj Ej
0ψj

0  -  Σ ajEN
0ψj

0

                           j                                                  j

= Σ aj (Ej
 0 - EN

0) ψj
0 = (EN

1 - H1) ψN
0

                            j

We want to calculate EN
1.  Multiply both sides by (ψm

0)* &
integrate over the spatial coordinates:

∫ (ψm
0)* Σ aj (Ej

 0 - EN
0) ψj

0 dτ
                                                    j

= ∫ (ψm
0)* (EN

1 - H1) ψN
0dτ

Σ aj (Ej
 0 - EN

0) ∫ (ψm
0)* ψj

0 dτ
                    j

= ∫ (ψm
0)* EN

1 ψN
0dτ - ∫ (ψm

0)* H1 ψN
0dτ

Σ aj (Ej
 0 - EN

0)δmj = EN
1  δmN  - ∫ (ψm

0)* H1 ψN
0dτ

                    j

am (Em
 0 - EN

0) = EN
1  δmN  - HmN

1

If m=N, we can calculate EN
1:

0 = EN
1 - HNN

1

EN
1 = HNN

1 (Note:  Don’t need ψN
1 to get EN

1)

If m is not equal to N, we can calculate ψN
1:

am (Em
 0 - EN

0) =  - HmN
1

am  = - HmN
1/(Em

 0 - EN
0) = HmN

1/(EN
 0 - Em

0)

Since  ψN
1 = Σ aj ψj

0



              j

from the above we know the form of all the aj’s except aN.  We
can set aN = 0.  So

ψN
1 = Σ [HjN

1/(EN
 0 - Ej

0)] ψj
0

   j not = N

And

ψN ≈ ψN
0 + ψN

1, λ=1

≈ ψN
0 + Σ [HjN

1/(EN
 0 - Ej

0)] ψj
0

                            j not = N

Solve for EN
2

Expand ψN
2 in terms of the  ψN

0

ψN
2 = Σ bj ψj

0

       j

Then (H0 - EN
0) ψN

2 = EN
2ψN

0 + (EN
1 - H1) ψN

1

becomes

(H0 - EN
0) Σ bj ψj

0 = EN
2ψN

0 + (EN
1 - H1) ψN

1

= Σ bj (H
0ψj

0 - EN
0ψj

0)

= Σ bj (Ej
 0ψj

0 - EN
0ψj

0)

= Σ bj (Ej
 0 - EN

0) ψj
0

Multiply both sides by (ψm
0)* & integrate over the spatial

coordinates:

∫ (ψm
0)* Σ bj (Ej

 0 - EN
0) ψj

0 dτ



= EN
2∫ (ψm

0)* ψN
0 dτ   + ∫ (ψm

0)* (EN
1 - H1) ψN

1 dτ

The Σ below stands for the sum over j:

Σ bj (Ej
 0 - EN

0) ∫ (ψm
0)* ψj

0 dτ

= EN
2∫ (ψm

0)* ψN
0 dτ   + EN

1∫ (ψm
0)* ψN

1 dτ

 - ∫ (ψm
0)* H1 ψN

1 dτ

Σ bj (Ej
 0 - EN

0) δmj

 = EN
2δmN + EN

1∫ (ψm
0)* ψN

1 dτ - ∫ (ψm
0)* H1 ψN

1 dτ

bm (Em
 0 - EN

0)

 = EN
2δmN + EN

1∫ (ψm
0)* ψN

1 dτ - ∫ (ψm
0)* H1 ψN

1 dτ

 If m=N, we can calculate EN
2:

EN
2  = EN

1∫ (ψN
0)* ψN

1 dτ + ∫ (ψN
0)* H1 ψN

1 dτ

Note: to get the second order correction to the energy we only
need to know the first order correction to the wavefunction.  In
general, we can calculate EN

2k+1 from knowing ψN
k

Can we simplify EN
2 ?  We must evaluate ∫ (ψN

0)* ψN
1 dτ.  But

ψN
1 = Σ aj ψj

0

        j not equal to N

and aj  = HjN
1/(EN

 0 - Ej
0), aN  = 0.

The Σ below stands for the sum over j not equal to N:



So ∫ (ψN
0)* ψN

1 dτ = ∫ (ψN
0)* Σ aj ψj

0 dτ

= Σ aj ∫ (ψN
0)* ψj

0 dτ

= Σ aj δNj

= 0 since j cannot be equal to N.

Therefore

EN
2  =  ∫ (ψN

0)* H1 ψN
1 dτ

Using the definition of  ψN
1

EN
2  =  ∫ (ψN

0)* H1 Σ aj ψj
0

       



EN = EN
 0 + HNN

1  + Σ   HjN
1 2/(EN

 0 - Ej
0)

                                                                                  j not equal to N

We could continue in the same method as above (Rayleigh-
Schrödinger Perturbation Theory) to higher order of
perturbation.  But how do you know when to stop?  Does the
perturbation series converge?  Expect  EN

0  >  EN
1  >  EN

2
> ...

What does the perturbation procedure actually do?  

Since ψN
1 is expanded in terms of  ψj

 0 for k not equal to N,
the effect of the procedure is to add into first order those states
from the complete set that were left out of zeroth order.  But
they aren’t added in with equal weight to that of ψN

 0 (i.e. 1), but
rather with weight aj. Since

aj ∝  1/(EN
 0 - Ej

0)

the terms which have Ej
0 close to EN

 0  will cause  1/(EN
 0 - Ej

0)
to be large & therefore result in a larger contribution from the
states close to N.

Practical Considerations:

(1) EN
1 is easy to evaluate since only ψN

0 is used in

HNN
1 = ∫ (ψN

0)* H1 ψN
0 dτ

(2) EN
2 is difficult to evaluate because you would need the

complete set of ψj
0 (except j=N).  This is an infinite number of

terms!  If you have a Hamiltonian that supports both discrete &
continuous states, as with the hydrogen atom, then you must
include not only the sum over all discrete states, but the integral
over all the continuous states, as well.  This is impossible to do



exactly.  Instead you could use a combination variation-
perturbation treatment.

Perturbation Treatment of the Ground State of He (we will
also do a Variation treatment)

He has 2 protons & 2 electrons.  The nucleus has a charge of
+2e & each electron has a charge of -e.  Electrons are
indistinguishable particles, but we will number them to keep
track of them.  Electron #1 is at distance r1 from the nucleus;
Electron #2 is at distance r2 from the nucleus.  The distance
between the two elecrons is r12.  Let us set up the problem to
treat a general two-electron ion by using a nuclear charge of
+Ze.  Then

H = - h2/(2m) ∇ 1
2 - Z(e’) 2/ r1 - h

2/(2m) ∇ 2
2 - Z(e’) 2/ r2+(e’) 2/ r12

In spherical polar coordinates

ψ = ψ (r1, θ1, φ1, r2, θ2, φ2)

r12 = [(x1 - x2)
 2  + (y1 - y2)

 2 + (z1 - z2)
 2]1/2

Let H1
0 be the hydrogen-like Hamiltonian for electron #1; Let

H2
0 be the hydrogen-like Hamiltonian for electron #2:

H1
0 = - h2/(2m) ∇ 1

2 - Z(e’) 2/ r1; E1 = -(Z2/N1
2)(e’) 2/(2a0)

H2
0 = - h2/(2m) ∇ 2

2 - Z(e’) 2/ r2; E2 = -(Z2/N2
2)(e’) 2/(2a0)

where

H1
0 F1 (r1, θ1, φ1) = E1 F1 (r1, θ1, φ1)

H2
0 F2 (r2, θ2, φ2) = E2 F2 (r2, θ2, φ2)



and F1 & F2 are the hydrogen-like wavefunctions & E1 & E2 are
the hydrogen-like energies.

Define H0 = H1
0 + H2

0.

If the Hamiltonian is a sum of two Hamiltonians, then the
wavefunction is a product of their eigenfunctions:

ψ0 (r1, θ1, φ1, r2, θ2, φ2) = F1 (r1, θ1, φ1) F2 (r2, θ2, φ2)

Then

H0ψ0 = (H1
0 + H2

0) F1 F2

= F2 H1
0 F1 + F1H2

0 F2

= F2 E1 F1  + F1E2 F2

= (E1  + E2) F1 F2

= E0ψ0, E0 = E1  + E2 = -(Ze’) 2 /(2a0)(1 /N1
2 + 1 /N2

2)

The assumption in this choice of H0 is that the two electrons
exert no repulsive force on each other (i.e. they operate as
independent particles).  This is not physically correct, but can be
used as a first approximation.

In the ground state of helium, both electrons are in the 1s orbit,
but have opposite spins.  Indicate the electronic configuration by
1s 2.  So the zeroth-order approximation to the ground state
wavefunction can be given

ψ1s2

0 = F1 F2



F1 = 1/√π (Z/a0)
3/2 e-Zr

1
/a

0

F2 = 1/√π (Z/a0)
3/2 e-Zr

2
/a

0

E1s2

0 = -(Ze’) 2 /(2a0)(1 /12 + 1 /12)

= -[(Ze’) 2 /(2a0)](2);        (e’) 2 /(2a0) = 13.6 eV

= - (4) (2) (13.6eV) for He

= -108.8eV for He.

How does this compare to the actual ground state energy of He?

He has E = 0 when both electrons have been ionized, So

Etrue = -(IP1 + IP2); IP = ionization potential

= - (24.6 eV + 54.4 eV) = -79.0 eV

So -108.8 eV is off by 38%!  This is not unexpected because the
perturbation

H1 = H - H0 = (e’) 2/ r12

is not necessarily small.  When r1 is close to r2, (e’) 2/ r12 is large.

Let’s see what improvement we can get by calculating E1:

E1 = <ψ0  H1 ψ 0>

= Z6(e’)2/(π2a0
6) ∫0

∞ ∫0
∞ ∫0

π ∫0π∫0
2π∫0

2π r1
2 r2

2 e-Zr
1
/a

0 e-Zr
2
/a

0 (1/r12)

⋅ sin θ1 sin θ2 dr1 dr2  dθ1 dθ2 dφ1 dφ2



1/r12 can be expanded in terms of r1 & r2 & the Spherical
Harmonics, Yl

m(θ,φ):

1/r12 = Σ Σ [4π/(2l+1)] (r<
l/ r>

l+1) [Yl
m(θ1,φ 1)]* [Y l

m(θ2,φ 2)],

where r< is the smaller of r1 & r2 & r> is the larger of r1 & r2.
Skim through the details of how the integral is done (p. 230-
231).  The result is

E1 = (5Z/8) (e’)2/a0

= (5Z/4) (e’)2/(2a0)

= (5x2/4) (13.6eV)

= 34.0 eV

So E0 + E1 = -108.8 eV + 34.0 eV = -74.8 eV

Compared to -79.0 eV, this is in error by only 5.3%.

It is impossible to calculate all the contributions to E2 from the
discrete & continuum states.  Other combinations of F1 & F2 are
F1 = 1s, F2 = 2s, 2p, 3s, 3p,...; F1 = 2s, F2 = 2s, 2p, 3s, 3p,..., etc.
ψ1 is a sum over all these discrete states, as well as the integral
over all the continuum states.  Since ψ1 contains configurations
other than 1s2, this is called Configuration Interaction.

However, we can get an accurate E2 by the Variation Method.
Hylleraas has shown that

I > E2

for I defined as



I = ∫ (φ1)* (H0 - E0) φ1 dτ + ∫ (φ1)* (H1 - E1) ψ0 dτ

+ ∫ (ψ0)* (H1 - E1) φ1 dτ

where φ1 is a trial function for ψ1. (Note: If φ1 =  ψ1, then the
first two terms cancel since

(H0 - E0) ψ1 = -(H1 - E1) ψ0.

If φ1 =  ψ1, then I = ∫ (ψ0)* (H1 - E1) ψ1 dτ

= ∫ (ψ0)*[E2ψ0 - (H0 - E0) ψ2]dτ

= E2 ∫ (ψ0)*ψ0 dτ = E2)
So choose a trial function φ1 with several variable parameters &
minimize I with respect to these parameters so as to approximate
E2.

Scherr & Knight used 100 variables in their trial function &
calculated

E2 = -4.3 eV   & E3 =  0.1 eV

Then E ≈ (-108.8 + 34.0 -4.3 +0.1) eV = -79.0 eV

The series is converging because  En  decreases as n increases.

To 13th order in perturbation, E ≈ -2.903 724 33 (e’) 2/a0;

From a variational calculation, E ≈ -2.903 724 38 (e’) 2/a0.

Comparison of Variation & Perturbation Methods:

Let’s compare the variation & peturbation methods:  Actually
we would get the same energy correct through first order if we



used the ground state wavefunction as the trial function. Show
that this is true:

Perturbation Method:

Let H = H0 + H1 & H0 ψg
0 = Eg

 0 ψg
0; g = ground state

Define Eg = Eg
0 + Eg

1 (truncate energy at first order)

Eg
1 = <ψg

0  H1ψ g
0>



Variation Method:

I = <φ Hφ > > Eg

If φ = ψg
0, then I = <ψg

0 Hψ g
0>

=  <ψg
0  H0 + H1 ψ g

0>

=  <ψg
0  H0 ψ g

0> +  <ψg
0  H1 ψ g

0>

=  <ψg
0  E g

 0 ψ g
0> +  <ψg

0  H1 ψ g
0>

= E g
 0<ψg

0ψ g
0> +  <ψg

0  H1 ψ g
0>

= Eg
0 + Eg

1

So the perturbation & variation methods give the same result
through first order if the true ground state wavefunction happens
to be used as the trial function.

Variation Treatment of the Ground State of Helium

Let’s compare results (energy) for different choices of trial
function.

Choice (I): We saw above that if ψg
0 = ψ1s2

= 1/√π (Z/a0)
3/2 e-Zr

1
/a

0   1/√π (Z/a0)
3/2 e-Zr

2
/a

0

then the energy is -74.8 eV

Choice (II): Try making the trial function more flexible by
replacing the atomic number, Z, by a variational parameter, ρ.
This allows for the screening of the nuclear charge by the other



electrons. (Full nuclear charge corresponds to ρ=2; full
screening, ρ=2-1=1)

Optimize I with respect to ρ, the effective nuclear charge.

I = <φ Hφ >

Choose φ = f1f2

where f1 = 1/√π (ρ/a0)
3/2 e-ρr

1
/a

0

f2 = 1/√π (ρ/a0)
3/2 e-ρr

2
/a

0

and [-h2/(2m) ∇ 1
2 - ρ (e’) 2/r1]f 1 = -ρ2(e’) 2/(2a0) f1

[-h2/(2m) ∇ 2
2 - ρ (e’) 2/r2]f 2 = -ρ2(e’) 2/(2a0) f2

We can simplify the calculation if we write H to contain the
Hamiltonians for these eigenfunctions.  We must add & subtract
terms in ρ so that we still have the He atom Hamiltonian.

H = - h2/(2m) ∇ 1
2 - Z(e’) 2/ r1 - h

2/(2m) ∇ 2
2 - Z(e’) 2/ r2+(e’) 2/ r12

= [-h2/(2m) ∇ 1
2 - ρ (e’) 2/r1] + [-h2/(2m) ∇ 2

2 - ρ (e’) 2/r2]

+ (ρ - Z) (e’) 2/r1 + (ρ - Z) (e’) 2/r2  +(e’) 2/ r12

Then H φ = H f1f2

= f2[-h
2/(2m) ∇ 1

2 - ρ (e’) 2/r1] f1 + f1[-h
2/(2m) ∇ 2

2 - ρ (e’) 2/r2] f2

+ {(ρ - Z) (e’) 2/r1 + (ρ - Z) (e’) 2/r2  +(e’) 2/ r12} f 1f2

Skim through the details of the integration, which shows that



I = <φ Hφ > = (ρ2 - 2Zρ + 5ρ/8) (e’) 2/a0
∂I/∂ρ = 0 → 2ρ - 2Z + 5/8 = 0 → ρ = Z - 5/16

Since Z > ρ  > Z-1, ρ is a screening parameter.

Evaluate I with this value of ρ to get the energy:

I = [(Z - 5/16) 2 - 2Z(Z - 5/16) +  5(Z - 5/16)/8] (e’) 2/a0

= -77.7 eV for Z=2 (1.9% error)

(Remember (I) with Z-2 was in error by 5.3% when no ρ was
used.)

Choice (III): Let φ = g(1) g(2).  No matter what the choice of g
is, we can’t get the energy to be closer than 1.4% from the exact
energy because φ has the wrong functional form.  In He, the
electrons are not truly independent because of the 1/r12 term.
Therefore, the Schrödinger Eq. is not really separable.

Choice IV: Use a function that depends on r12; allows electron
motion to be correlated.

Hyllaraas: φ = N[e-ρr
1
/a

0 e-ρr
2
/a

0 (1 +b r12)]

Vary ρ,b to get ρ = 1.849, b = 0.364, I = -78.7 eV (off by 0.3
eV)

Choice V: Allow even more flexibility; Hylleraas:

φ = e-ρr
1
/a

0 e-ρr
2
/a

0  Σ c ijk (r1 + r2)
i
  (r1 - r2)

j 
 r12

k

        i,j,k

Results in I off by only 0.01 eV



Choice VI: Same as V, but more terms (1,078 terms- Pekeris)

I = -2.903 724 375 (e’)2/a0→

Ionization energy = 198 310.69 cm-1

Experimental ionization energy = 198 310.82 cm-1

Very good agreement.

SUMMARY OF METHODS:
Variation Method Perturbation Theory

Applicable to ground & Applicable to all states
first few excited states

Easy to evaluate integrals Hard to evaluate infinite
because have chosen the sums over discrete states &
form of the trial function integrals over continuum 

states necessary to the evalu-
of second & higher-order
corrections

A poor trial function can ψk → E 2k+1

give an accurate energy

Other properties are not Other properties are not
calculated with the same calculated with the same
accuracy as the energy accuracy as the energy


