
VARIATION METHOD

For a system with more than one electron, we can’t solve
the Schrödinger Eq. exactly.  We must develop methods of
approximation, such as

Variation Method
Perturbation Theory
Combination Variation/Perturbation

The Variation Method doesn’t calculate a direct solution to the
Schrödinger Eq.; Rather, it uses an approximate wavefunction
(called a trial function) to get the best approximation to the
property of interest, such as the energy.  It is much easier to get
an approximate wavefunction that will give a good
approximation to the energy than to get the exact wavefunction.
This procedure works because you can prove a theorem that the
energy that is calculated using the trial function is always
greater than or equal to the exact ground state energy.  As the
trial function gets beter (i.e. closer to the exact wavefunction,
whatever that may be), then the energy approaches the exact
ground state energy from above, i.e. it is an upper bound to the
exact ground state energy.

THEOREM:   Given a system with Hamiltonian operator H, if φ
is any normalized well-behaved function that satisfies the
boundary conditions of the problem, then

∫φ* H φ dτ    >    E0,

where E0 is the true value of the lowest energy eigenvalue of H.

Proof:  Let I = ∫φ* (H- E0) φ dτ   >   0



=  ∫φ* H φ dτ - ∫φ* E0 φ dτ

=  ∫φ* H φ dτ - E0∫φ* φ dτ

=  ∫φ* H φ dτ - E0, assuming φ is normalized.

Show I    >    0:

Let ψi & Ei be the true (exact) eigenfunctions &
eigenvalues of H:

H ψi  = Ei ψi.

Since the ψi are a complete set, we can expand the trial function
in terms of the ψi:

φ = Σ ak ψk
       k

As a result, φ satisfies the same boundary conditions as the ψi.
Then

I = ∫φ* (H- E0) φ dτ

becomes

I = ∫Σ ak
* ψk

*
 (H- E0) Σ aj ψj dτ

       k            j

  = ∫Σ ak
* ψk

*
 Σ (H- E0) aj ψj dτ

       k j



  = ∫Σ ak
* ψk

*
 Σ (Ej- E0) aj ψj dτ, since H ψj  = Ej ψj

       k j

  = Σ ak
*  aj(Ej- E0) ∫ψk

*
 ψj dτ

      k,j

= Σ ak
*  aj(Ej- E0) δkj

      k,j

= Σ ak
*  ak(Ek- E0)

      k

= Σ  ak 2 (Ek- E0)
      k

Since E0 is the lowest energy eigenvalue, (Ek- E0)    >    0.  Also
 ak 2    >    0. So I    >    0.

If φ is not normalized, the Variation Method can still be used,
but the overlap integral must be calculated:

I =  ∫φ* H φ dτ - E0∫φ* φ dτ

And ∫φ* H φ dτ /∫φ* φ dτ        >   E0

There are many possible φ‘s.  The best φ is the one for which
the variational integral (∫φ* H φ dτ or ∫φ* H φ dτ /∫φ* φ dτ) is
closest to E0. If we happen to choose φ = ψ0, then we will
calculate E0 from the variational integral.  Note that it is
possible to get a good approximation to E0 using a poor φ.

Method of Approach:



(1) Guess a form for the trial function.

(2) Include several variable parameters

(3) “Optimize” the varation integral with respect to these
parameters (i.e. Take the partial derivative of the variation
intefral with respect to each of the N variable parameters & set
it equal to zero.  This gives N eq.  Solve each of the N eq.
simultaneously. This gives the parameters that determine the
best  φ.)

(4) Use φ to calculate

∫φ* H φ dτ /∫φ* φ dτ

to get the best energy.

EXAMPLES: First, let’s use the Variation Method on some
exactly solvable problems to see how well it does in calculating
E0.

(1) Find the upper bound to the ground state energy of a particle
in a box of length L.  V = 0 inside the box & ∞ outside.  ψ = 0
outside the box.  H = -  h  2/(2m) d2/dx2

Boundary Conditions: ψ = 0, x = 0,L

Trial function: φ = x (L-x) 0   <   x    < L

φ = 0 x > L, x < 0

Calculate ∫φ* H φ dτ /∫φ* φ dτ



∫φ* H φ dτ = ∫0
L[x(L-x)]  * [ -  h  2/(2m) d2/dx2] [x(L-x)]dx

d/dx [x(L-x)] = L-x + x(-1)

d2/dx2 [x(L-x)] = -1 -1 = -2

∫φ* H φ dτ = ∫0
L[x(L-x)] [ -   h  2/(2m)]( -2) dx

=   h  2/m ∫0
L(xL - x2) dx

=   h  2/m {L ∫0
Lx dx - ∫0

L x2 dx }

=   h  2/m {L (L 2/2) - L3/3}

=   h  2 L3/(6m)

∫φ* φ dτ = ∫0
L[x(L-x)]  * [x(L-x)]dx

= ∫0
L x2(L-x) 2 dx

= L2∫0
L x dx + ∫0

L x4 dx - 2L∫0
L x3 dx

= L2(L3/3) + L5/5 - 2L (L4/4)

= L5/30

I = ∫φ* H φ dτ /∫φ* φ dτ

= {    h  2 L3/(6m)}/{ L 5/30}



= 5   h  2/(L2m2) = 5 h2/(4π2L2m2) = E (variational energy)

By exact solution (Chapter 2), we found E0 = h2/(8L2m2)

% error =  E - E0 x100/ E0

=   5 h2/(4π2 L2m2) - h2/(8L2m2)  x100/ { h2/(8L2m2)}

= (5/π2 - 1/2)x100/(1/2)

=1.3%

(2) One-Dimensional Harmonic Oscillator

Boundary Conditions: ψ = 0, x =    +   ∞

Find a form for the trial wavefunction that satisfies the
boundary conditions:

e-x →  0 as x → ∞

e-x →  ∞ as x → -∞

e-x**2  →  0 as x →    +   ∞

But since we can expand e-x**2  in a power series, the power to
which e is raised must be dimensionless otherwise we will get
terms in (Length)2, (Length)4, etc.  in the expansion.  So
include a factor of

α = 2πνm/  h        units of (Length)-2



Then αx2 is dimensionless.  Here, α  is a constant, not a
variable parameter.

Since V = kx2/2 is an even function, we need a trial function
that has a definite parity because the true wavefunction must be
even or odd.

(1 + b x2) e-αx**2  doesn’t have a definite parity, but

φ = (1 + c αx2) e-αx**2  does (even)

∫φ* φ dτ = ∫0
∞(1 + c αx2)2e-2αx**2 dx

= 2{∫0
∞ e-2αx**2 dx + 2cα∫0

∞ x2e-2αx**2 dx

+ c2α2∫0
∞ x4e-2αx**2 dx}

= 2{(1/2)[π/(2α)]1/2 + 2cα/4 )[π/(2α)3]1/2

+ c2α2(3/8) )[π/(2α)5]1/2

= [π/(2α)]1/2{1 + c/2 + c23/16}

∫φ* H φ dτ =   h  2/m(πα/2)1/2{43c2/128 - c/16 + 5/8) (check on 
your own)

I = ∫φ* H φ dτ/∫φ* φ dτ



=   h  2/m(πα/2)1/2{43c2/128 - c/16 + 5/8)/ [π/(2α)]1/2{1 + c/2 + 

c23/16}

=   h  2α/(m8){43c2 - 8c + 80}/{16 + 8c + 3c2}

∂I/∂c = 0 → ∂/∂c{43c2 - 8c + 80}/{16 + 8c + 3c2}  = 0

= (86c-8)(16+8c+3c2)-{43c2 - 8c + 80}(8 + 6c)/{16 + 8c + 3c2}

This will be zero if the numerator = 0.  Simplifying the
numerator →

23 c2 + 56c -48 = 0 or c = -3.107 or 0.6718

Evaluate I with these two c ‘s to see which one gives the lower
energy:

I =   h  2α/(m8){43c2 - 8c + 80}/{16 + 8c + 3c2}
and

α = 2πνm/  h

gives I = E = hν{43c2 - 8c + 80}/{24 c2 + 64c + 128}

c = 0.6718 → lower E = 0.517hν

Since E0 = 0.5 hν, %Error = 3.4 %

An alternative trial function could be

φ = e-bαx**2



Optimization of the variational integral gives b=1/2 & E = 0.5
hν = E0 (see homework problem).  So in this case we happened
to have chosen a form for the trial function which is the ground
state wavefunction of the system.

Linear Variation Functions

A common type of trial function for the wavefunction of
molecules is one that contains the parameters as multiplicative
factors of functions rather than appearing in the exponents.  The
trial function can be a linear combination of linearly
independent functions:

N

φ = Σ cif i
i=1

where the fi satisfy the boundary conditions of the problem.

   N N

So ∫φ*φ dτ = ∫ (Σ cif i)
 *(Σ cjf j) dτ

        i=1 j=1
    N N

= Σ Σ ci
*cj ∫ f i

* f j dτ
          i=1 j=1

    N N

= Σ Σ ci
*cj Sij

          i=1 j=1

where Sij is the overlap integral, ∫ f i
* f j dτ. Sij = 0 only when the

f’s are orthogonal.  The f’s are not necessarily the
eigenfunctions of any operator.

 N                                     N

∫φ*H φ dτ =∫ (Σ cif i)
 * H (Σ cjf j) dτ

  i=1       j=1



    N N

= Σ Σ ci
*cj ∫ f i

*  H fj dτ
          i=1 j=1

    N N

= Σ Σ ci
*cj Hij

          i=1 j=1

where Hij is the integral, ∫ f i
*  H fj dτ.

Find the c’s which minimize the variation integral

I = ∫ φ* H φ dτ/∫ φ* φ dτ



         N N                                               N N
I = {Σ Σ ci

*cj Hij}/{ Σ Σ ci
*cj Sij  }

               i=1 j=1                                           i=1 j=1

Find the c’s such that ∂I/∂ci = 0, i = 1,...N

Rewrite the expression for I as
     N N                                                     N N
I{ Σ Σ cj

*ck Sjk } = { Σ Σ cj
*ck Hjk}

     j=1 k=1                                               j=1 k=1

Take the partial derivative of each side with respect to c:

               N N                                                                                   N N
(∂I/∂ci) { Σ Σ cj

*ck Sjk } + I ∂/∂ci{ Σ Σ cj
*ck Sjk }

              j=1 k=1                                                                           j=1 k=1

                                                 N N
= ∂/∂ci{ Σ Σ cj

*ck Hjk}
                                               j=1 k=1

The first term on the left = 0, since the (∂I/∂ci) = 0 by design.
Consider the second term on the left:

        
    N N                                                        N N

∂/∂ci{ Σ Σ cj
*ck Sjk } =  Σ Σ ∂/∂ci (cj

*ck) Sjk
                                           j=1 k=1 j=1 k=1

           
                   N N

=  Σ Σ (ck ∂cj
*/∂ci + cj

*∂ck /∂ci) Sjk
                                               j=1 k=1

∂cj
*/∂ci = 0 unless j = i.  So ∂cj

*/∂ci = δji  & ∂ck/∂ci = δki. So

           N N                                                  N N
∂/∂ci{ Σ Σ cj

*ck Sjk } = Σ Σ (ck δji  + cj
*δki) Sjk



                       j=1 k=1                                               j=1 k=1



           N                   N              N               N

= Σ ck (Σδji  Sjk)  + Σcj
* (Σδki Sjk)

   k=1             j=1                                    j=1             k=1

    N                                N
= Σ ck Sik + Σcj

* Sji
   k=1                              j=1

             N
= 2 Σ ck Sik

             k=1

Similarly,  

                         N N                                                            N    

∂/∂ci{ Σ Σ cj
*ck Hjk } = 2 Σ ck Hik

                        j=1 k=1                                                    k=1

       N                                          N

So I 2 Σ ck Sik  = 2 Σ ck Hik, i = 1,....N
   k=1                                    k=1

Or
                   N

Σ ck (Hik - Sik I) = 0
                 k=1

The ck’s are the unknowns, the (Hik - Sik I) are the coefficients.
 For example, for N = 2, we have a set of linear homogeneous
eq.:

(H11 - S11I)c1 + (H12 - S12I)c2 = 0

(H21 - S21I)c1 + (H22 - S22I) c2 = 0

There will be a nontrivial solution for the c’s if the determinant
of coefficients equals zero:



 (H11 - S11I)       (H12 - S12I)

  (H21 - S21I) (H22 - S22I)   = 0

Or  (H11 - S11I) (H22 - S22I) - (H21 - S21I) (H12 - S12I) = 0

This gives a quadratic Eq. in I. Solving for I gives two roots, I0
& I 1.  It is possible to show that I0 is an upper bound to E0, the
exact ground state energy & that I1 is an upper bound to E1, the
exact energy of the first excited state.  It can be shown that the
number of states that are approximated depend on the number
of terms in the trial function & that including more terms in the
trial function does not change the accuracy of the previously-
calculated energies.

For the general case with an N-term trial function, we must
solve an NxN determinant

(H11 - S11I)   ......    (H1N - S1NI)

  ........          ......      ............   = 0

(HN1 - SN1I)   ...... (HNN - SNNI)

There will be N roots such that I0    <   I 1.....   <  IN  & E0   <   I0, E1    <
I1, ....  EN    <   IN

This is called the Secular Eq. and can be solved by the methods
for solving homogeneous eq.  The solution is made easier if the
f’s are chosen (or made) orthogonal.  Then all the overlap
integrals (Sij) are zero.  



After solving the Secular Eq. for the I’s, we can get ψ by first
finding the c’s.  Procedure to find E0  & ψ0 (example- N=2):

(1) Calculate I0 from the secular eq.  It will be the lowest
root of

(H11 - S11I) (H22 - S22I) - (H21 - S21I) (H12 - S12I) = 0

(2) Use I0 in the set of simultaneous Eq. to find the c k’s:

                   N

Σ ck (Hik - Sik I) = 0
                 k=1

For N=2:

(H11 - S11I0)c1 + (H12 - S12I0)c2 = 0

(H21 - S21I0)c1 + (H22 - S22I0) c2 = 0

Discard one of the eq. & solve for c2 in terms of c1:

c2 = c1 (H11 - S11I0)/ (H12 - S12I0)

(3) Find c1 by normalization of ψ0. Calculate c2 from c1.

EXAMPLE: Polarizability of H

The H atom is put into an electric field of strength F (a.u.) in
the z-direction.  

Let φ = c1φ1s + c2φ2p,



where φ1s & φ2p are the exact 1s & 2p H atom wavefunctions.
To simplify the calculations work in atomic units (a.u.).  The
unit of length is the Bohr radius and this is taken as 1.  So

a0 =   h  2/(mee
2) = 1

Then φ1s = 1/√π Z3/2 e-Zr  & φ2pz = 1/[4√(2π)] Z5/2 e-Zr/2cos θ

& H = -1/2 ∇ 2 - 1/r - F r cos θ = Hatom - F r cos θ,

EN = -1/(2N2)

where z = r cos θ.

Solve for I from:

 (H11 - S11I)       (H12 - S12I)

  (H21 - S21I) (H22 - S22I)   = 0

Or  (H11 - S11I) (H22 - S22I) - (H21 - S21I) (H12 - S12I) = 0

where  H11 = <φ1s H φ 1s>

H12 = <φ1s H φ 2pz>

H21 = <φ2pz H φ 1s>

H22 = <φ2pz H φ 2pz>

S11 = <φ1sφ 1s> = 1 since φ1s is normalized



S12 = <φ1sφ 2pz> = 0 = S21 since φ1s &  φ2pz are orthogonal

S22 = <φ2pzφ 2pz> = 1 since φ2pz is normalized

H11 = <φ1s H φ 1s>

= <φ1s Hatomφ 1s> + <φ1s - F r cos θφ 1s>

= <φ1s E1φ 1s> + 0 = E1 = -1/2 a.u.

H22 = <φ2pz H φ 2pz>

= <φ2pz Hatomφ 2pz> + <φ2pz - F r cos θφ 2pz>

= <φ2pz E2φ 2pz> + 0 = E2 = -1/8 a.u.

H12 = <φ1s H φ 2pz>

= <φ1s Hatomφ 2pz> + <φ1s - F r cos θφ 2pz>

= E2<φ1sφ 2pz> -215/2 F/35 a.u.

= -215/2 F/35 a.u. since <φ1sφ 2pz> = 0

H21 = <φ2pz H φ 1s>

= <φ2pz Hatomφ 1s> + <φ2pz - F r cos θφ 1s>

= E1<φ2pzφ 1s> -215/2 F/35 a.u.



= -215/2 F/35 a.u. since <φ2pzφ 1s> = 0

So solving the determinant for I gives

(-1/2 - I) (-1/8 - I) - (-215/2 F/35) (-215/2 F/35) = 0

I = -5/16    +    (9/64 + 217F2/310)1/2/2

If F=0, get I = E = -1/2 or -1/8 (the exact 1s & 2p energies)

If F = 0.1 a.u, I = -0.51425 a.u. & -0.1107 a.u.; E0 = -0.51425
a.u. is the best upper bound to the 1s state energy (-0.5 a.u.).  

Find c1 & c2 & for F = 0.1 a.u. & E0 = -0.51425 a.u.:

c1 (H11 - E0) + c2 (H12) = 0

c1 (H12) + c2 (H22 - E0) = 0

Substituting gives

0.01425 c1 - 0.074493 c2  = 0

- 0.074493  c1 + 0.38925 c2  = 0

Dropping the second eq. & solving for c1 from the first gives

c1 = 5.227 c2

Normalizing the wavefunction gives

  c1 2 +   c2 2 = 1



(5.227 c2)
 2 + c2

2 = 1 → c2
 =    +    0.18789

If c2
 = + 0.18789, c1

 = 0.98219.  (the choice of the positive root
for c2 is arbitrary).  then

φ = 0.98219 φ1s + 0.18789  φ2pz

Note that most of the contribution comes from φ1s, which
agrees with the fact that the variational energy is an upper
bound to the ground state energy.



If we used the other root of the eq., I = -0.1107, then

φ = -0.18789 φ1s +  0.98219 φ2pz

and this is an upper bound to the first excited state (n=2 level).
However, it may not be a good approximation since there is no
φ2s component.


