
THE HYDROGEN ATOM

(1) Central Force Problem
(2) Rigid Rotor
(3) H Atom

CENTRAL FORCE PROBLEM: The potential energy
function has no angular (θ, φ) dependence

V = V(r)

The force is a vector & is defined as the gradient of the potential

F = - ∇  V(x,y,z)

∇  is a vector quantity, the gradient operator:

∇  = i ∂/∂x + j ∂/∂y + k ∂/∂z

F = - (i ∂V/∂x + j ∂V/∂y + k ∂V/∂z)

Or, by transforming coordinates from Cartesian (x,y,z) to
Spherical Polar (r, θ, φ), one can give the gradient operator in
spherical polar coordinates.  Since V depends only on r, not θ&
ϕ, the resulting force depends only on r:

F = - ( dV(r)/dr ) ( r/r) for V = V(r).

To express the Hamiltonian for a Central Force problem, use
spherical polar coordinates where

∇ 2 = ∂2/∂r2 + (2/r) ∂/∂r + (1/ r2) ∂2/∂θ2 +



+ (1/r2) cot θ ∂/∂θ + 1/(r2 sin2 θ) ∂2/∂φ2

= ∂2/∂r2 + (2/r) ∂/∂r - 1/( r2h2) L2

where

L2 = - h2 (∂2/∂θ2 + cot θ ∂/∂θ + (1/ sin2 θ) (∂2/∂φ2).

Then H = T + V = - (h2/2m) ∇ 2 + V(r)

= - (h2/2m) (∂2/∂r2 + (2/r) ∂/∂r ) + L2/(2m r2) + V(r)

Will the angular momentum be conserved (constant)?  Can we
specify both angular momentum & energy (i.e. does H commute
with L2 and Lz?  Let’s see:

[H, L2] = [T + V, L2] = [T , L2] + [V, L2]

= [- (h2/2m) (∂2/∂r2 + (2/r) ∂/∂r ) + L2/(2m r2) , L2]

+ [V, L2]

= [- (h2/2m) (∂2/∂r2 + (2/r) ∂/∂r ) , L2] + [L2/(2m r2) , L2]

+ [V, L2]

In the first & third commutators above, the left-hand side
depends only on r; the right, only on θ & φ. So these
commutators equal 0.  In the second commutator, an operator
always commutes with itself, so this is 0, too.  Therefore,

[H, L2] = 0 if V is independent of θ & φ.
Since Lz doesn’t depend on r & [L2,Lz] = 0, then [Lz,H] = 0.

So, H, L2, & Lz have a common set of eigenfunctions ψ:



H ψ = E ψ

L2 ψ = l ( l+1) h2 ψ l = 0,1,2,3...

Lz ψ = m h ψ m = -l, -l+1, ..., l-1, l

(H - E ) ψ = 0 ⇒

[- (h2/2m) (∂2/∂r2 + (2/r) ∂/∂r ) + l(l+1) h2/ (2m r2)

+ V(r) - E] ψ = 0

Separation of Variables: Let ψ (r,θ, φ) = R(r) Ym
l(θ, φ)

Then one can divide through by Ym
l(θ, φ) to get an eqn. for R,

which defines the Central Force Problem:

[- (h2/2m) (∂2/∂r2 + (2/r) ∂/∂r ) + l(l+1) h2/ (2m r2)

+ V(r) - E] R(r) = 0.

This is the eqn. for the radial part of the wavefunction.  One can
solve for R(r) when the functional form of V(r) is known.  We
want to use this approach for the H atom, but in that case there
are two particles (electron, proton).  Need to reduce the two-
particle problem to a one-particle problem.  If we transaform
coordinates from Cartesian to relative center of mass
coordinates, this will allow us to separate off the translational
from the internal motion & results in a simplified Hamiltonian.
See Fig. 6.1



Here, r = vector from particle 1 to particle 2

R = vector from the origin to C, the center of mass

r1 = vector from the origin to particle 1

r = r2 - r1

R = (m1r1 + m2r2)/(m1 + m2) = (m1/M) r1 + (m2/M) r2

where M = total mass of system = m1 + m2.

Let µ = reduced mass = m1m2/(m1 + m2)

Kinetic Energy = T

= (1/2) m1 v1 2 + (1/2) m2  v2 2

where v1 = d r1/dt, etc.

One can show that

T = (1/2) M  dR/dt 2 + (1/2) µ  dr/dt 2

= 1/(2M)  pM 2 + 1/(2µ)   pµ  2

The first term on the right is the kinetic energy due to the
translational motion of the system & is not of interest.  The 2nd
term is the kinetic energy due to the internal motion of the
system (i.e. vibration, rotation) & is what we want to work with.



H = T + V =  1/(2M) pM
2 + 1/(2µ) pµ 

2 + V(x,y,z)

RIGID ROTOR

Consider the two-particle rigid rotor as a model of the rotational
motion of a diatomic molecule.  It is rigid because it is not
allowed to vibrate.  The two particles are connected by a
massless rod & are at a fixed distance (see Fig 6.2):

V = 0 --no potential energy
H = Htrans + Hrot

=  1/(2M) pM
2 + 1/(2µ) pµ 

2

Since we are not interested in translational energy, just solve the
rotational part for the rotational energy.  Set up the problem in
relative spherical polar coordinates, rather than Cartesians.
Essentially, this means we have a particle of mass µ constrained
to move on the surface of a sphere of radius d.



Remember: when H is a sum of non-interacting terms, E is a
sum of corresponding terms, & ψ is a product of the separate
wavefunctions.  For the Rigid Rotor

Hrot =  1/(2µ) pµ
2 = - h2/(2µ) ∇ 2

We could use relative Cartesian coordinates, but the mathematics
is much simpler if we use relative spherical polar coordinates.
Since the particles are constrained to be distance d apart, r = d =
constant and  ψ depends only on θ & φ.  Since

∇ 2 = ∂2/∂r2 + (2/r) ∂/∂r  - L2/(r2 h2),

then ∇ 2 ψ (θ,φ) = 0 - L2/(r2 h2) ψ (θ,φ).

Hrot ψ = E ψ ⇒ 1/(2µ) L2/d2 ψ = E ψ

But we already know the eigenfunctions of L2--the spherical
harmonics, Yml(θ, φ).  So

ψ = Ym
l(θ, φ).

Use a different symbol, J, to indicate rotational states:

J = rotational quantum number= quantum number for 
the total rotational angular momentum

M = quantum number for the z-component of the total
rotational angular momentum

L2 YM
J(θ, φ) = J (J+1) h2 YM

J(θ, φ)

Therefore



J (J+1) h2/(2µ d2) ψ = E ψ  ⇒

J (J+1) h2/(2µ d2) = E J = 0,1,2,...

We can give the energy levels of the rigid rotor in terms of the
moment of inertia of the two-particle system.  The moment of
inertia of a system of N particles about a particular axis is

      N
I = ∑ mi ρi

2

            I=1

where mi = mass of i-th particle

ρi = distance from i-th particle to the axis perpendicular to 
the line connecting the particles

For the rigid rotoor, choose the axis to pass through the center of
mass. Then for the chosen axis

I = m1 ρ1
2  + m2 ρ2

2 = m1m2/(m1 + m2) (ρ1
2  + ρ2

2) = µd2

So E = J (J+1) h2/(2I) J = 0,1,2...

Note:  The Energy depends only on the total angular momentum
quantum number J & not on the z-component

Essentially, EJ of the rigid rotor is the part of the rotational
kinetic energy obtained by fixing the interatomic distance R at
the equilibrium distance, Re.  As with the Harmonic Oscillator,
one can obtain corrections to EJ

Selection Rules

The molecule must have a permanent electric dipole
moment, µ:



<µ> is not equal to zero for the Rigid Rotor if ∆ J = + 1

Absorption from state J: ∆ E = h ν = EJ+1 - EJ

= h2/ (2I) { (J+1) (J+2) - J (J+1) }

= h2/ (2I) { (J+1) (J+2) - J }

= h2/ (2I) { 2(J+1) }

ν = ∆ E / h = h2/ (2I) { 2(J+1) }/h = Be  2(J+1),

where Be is the rotational constant h2/ (h2Ie)



The rotational absorption spectrum of a diatomic molecule
consists of a series of equally spaced lines:

J’ → J” ν ∆ν

0 → 1 2 Be (0+1) =  2 Be
2 Be

1 → 2 2 Be (1+1) =  4 Be
2 Be

2 → 3 2 Be (2+1) =  6 Be
etc.

Emission from state J: ∆ E = h ν = EJ - EJ-1

= h2/ (2I) { J(J+1)  - (J-1) (J-1+1) }

= h2/ (2I) { J(J+1 - J +1)}

= h2/ (2I) { 2J }

ν = ∆ E / h = h2/ (2I) { 2J }/h = Be  2J

The rotational emission spectrum of a diatomic molecule
consists of a series of equally spaced lines:

J’ → J” ν ∆ν

1 → 0 2 Be
2 Be

2 → 1 4 Be
2 Be

3 → 2 6 Be

The rotational spectra occur in the microwave region.  



Example: By measuring the spacing of the rotational lines, get
Be, then calculate Ie & Re.  For NO, ∆ν, the separation of
rotational lines is 102.1690 kMHz or 102.1690 x 109Hz

∆ν = 2 Be

Be = ∆ν/ 2 = 51.0854 kMHz = h2/ (h2Ie)

So, Ie = h2/ (h2Be)

= (1.05459 x 10-34 Js)2/2 (6.626x10-34 Js) (51.0845x109 s-1)

= (1.05459) 2x10-68 Js2/2 (6.626) (51.0845);     J s2 = kg m2

= 1.6436x10-80 kg m2 (103g/kg) (1010A/m) 2 (6.023x1023amu/g);

A = Angstrom
= 1.6436x6.023x10-34 amu A2

Ie = µ d2 = µ Re
2

Re
    = (Ie /µ)1/2

µ = reduced mass
= (14.00307)(15.99491)/( 14.00307 + 15.99491) amu

Re
    = 1.15108 A

Diatomic Rotation-Vibration Spectra

At high resolution, a peak corresponding to a vibrational
transition is made up of many individual lines (rotational fine
structure) because J changes simultaneously with v.  If one



neglects the interaction between vibrational & rotational motions,
such as the distortion caused by centrifugal force & the
dependence of the moment of inertia on the vibrational state,
then one can approximate the system by a

Rigid Rotor Harmonic Oscillator:

Enucl = Evib + Erot

= (v + 1/2) hν + J (J + 1) h2/(2I)

The same selection rules apply:  ∆v = +1,  ∆J = +1

But, there are 4 possible combinations:

∆v = 1 ∆J = 1  or -1
∆v = -1 ∆J = 1  or -1

So each set of absorption or emission lines associated with a
single vibrational transition contains two groups, or “branches”,
of lines for rotational transitions:

P branch  for  ∆J = -1, decreasing rotational energy
R branch  for  ∆J =  1, increasing rotational energy

The intensity of the absorption line is proportional to the
population of that state, i.e. the # of molecules with that
particular energy:

Ni = g i e
-Ei/kT

THE HYDROGEN ATOM - a familiar problem

Bohr Model: Postulates that an electron moves in orbits
around the nucleus like planets around the sun.  However, this is



physically incorrect because it violates the Uncertainty Principle
because both the position and momentum of the electron would
be specified. The Bohr Model could only predict the line
spectrum of H.  It failed for atoms with more than one electron.

We will treat the H atom with all the techniques of quantum
mechanics to come up with an approach that is applicable to
many electron atoms & molecules.  And yet, the H atom is still a
Model Problem. It is the only atom whose energy levels can be
found without making approximations to the wavefunction.
Since it is a one-electron problem, the wavefunction can be
solved exactly, yielding atomic orbitals. These types of
wavefunctions are used as a first approximation for many
electron systems.  In many electron systems there are
complicated electron-electron repulsions which disallow using an
exact functional form for the wavefunction.

The Hydrogenlike Atom (H, He+, Li+2)

The nucleus has a charge of +Ze, Z = atomic #
The electron has a charge of -e

For a two particle system with positive & negative particles
interacting according to Coulomb’s Law:

F = - Z (e’)2/r2 (r/r),



where e’ = proton charge in statcoulombs = e/√(4πεo)
e= proton charge in coulombs
εo = permitivity of a vacuum = 8.85419 x 10-12 C2/Nm2

Also F = -[dV(r)/dr] (r/r)

So, combining both expressions gives

dV(r)/dr = - Z (e’)2/r2

Solving for V(r):

V(r) = -Z (e’)2 ∫ dr/r2 = - Z (e’)2/r  

(Choose an integration constant = 0 to have V(∞) = 0)

In general, for two charges Q1 & Q2 separated by distance r12,

V = Q1 Q2/ r12 Coulomb’s Law

Since the potential energy depends only on the relative
coordinate, r12, the problem can be reduced from a two-particle
problem to two one-particle problems, as before.

One particle has the total mass M & contributes a term to
the Hamiltonian which just gives the translational kinetic energy:

pM
2/(2M)

Since we are interested in the internal (electronic))states of the
atom, we can ignore this term.  It will only add a constant.

Focus on the Hamiltonian for Internal Motion:



This Hamiltonian depends on the kinetic energy of the particle
with the reduced mass of the system, as well as the potential
energy:

H = pµ
2/(2µ) + V(r)

= - h2/(2µ) ∇ 2 - Z (e’)2/r

Since V depends only on r, this is a one-particle central force
problem.  Apply the Separation of Variables Technique:

ψ (r,θ,φ) = R(r) Yl
m (θ,φ) l = 0, 1, 2, ...;  m < l

∇ 2 = ∂2/∂r2 + (2/r) ∂/∂r  - 1/(r2h2) L2

L2 Yl
m (θ,φ) = l (l+1) h2 Y l

m (θ,φ)

So ∇ 2 ψ (r,θ,φ) = Yl
m (θ,φ) (∂2R/∂r2 + (2/r) ∂R/∂r)

 - R/(r2h2) L2 Yl
m (θ,φ)

= Yl
m (θ,φ) (∂2R/∂r2 + (2/r) ∂R/∂r)

- R/(r2h2) [l(l+1) h2] Y l
m (θ,φ)

= Yl
m (θ,φ)(∂2/∂r2 + (2/r) ∂/∂r) - [l(l+1)]/r2)R



Hψ = Eψ  ⇒

Y l
m (θ,φ) {- h2/(2µ) [∂2/∂r2 + (2/r) ∂/∂r)

- [l(l+1)]/r2] - Z (e’)2/r}R(r) = Y l
m (θ,φ) E R(r)

or, dividing through  by Yl
m (θ,φ),

{- h2/(2µ) [∂2/∂r2 + (2/r) ∂/∂r) - [l(l+1)]/r2] - Z (e’)2/r} R(r)

 = E R(r)

or, dividing through by 1/{- h2/(2µ)},

{ ∂2/∂r2 + (2/r) ∂/∂r) - [l(l+1)]/r2 - Z (e’)2/r} R(r)

 = E R(r)

{ ∂2/∂r2 + (2/r) ∂/∂r) - [l(l+1)]/r2 + (2µ/ h2) Z (e’)2/r} R(r)

 = - (2µ/h2) E R(r)

To simplify the expression, define a = h2/[µ(e’)2]

so that µ/h2 = 1/[a(e’)2]

Then

{ ∂2/∂r2 + (2/r) ∂/∂r) - [l(l+1)]/r2 + (2/a) Z/r} R(r)

 = - 2/[a(e’)2] E R(r)

R” + (2/r) R’ + {2/[a(e’)2] E - (2/a) Z/r - [l(l+1)]/r2}R = 0

Solve by a Power Series Solution:



Choose a form that will give a two-term (rather than a three-
term or greater) recursion relationship. We can find the form
from the behavior of R as r ⇒  ∞:

R” + {2E /[a(e’)2]} R = 0

This is a linear homogeneous eq. with constant coefficients of the
form:

Y” + P Y’ + Q Y = 0,  P = 0,   Q = 2E /[a(e’)2]

Solving the auxiliary eq.:

s2 + Ps + Q = 0

s2 + Q = 0 ⇒ s = +√(-Q) = +√-{2E /[a(e’)2]}

So R = c1 exp [√-{2E /[a(e’)2]}r]  

+ c2 exp [-√-{2E /[a(e’)2]}r]; exp [f(r)] =
ef(r)

Continuum States: E > 0

If E > 0, +√-{2E /[a(e’)2]} < 0 and

R ≈ c1 exp [i√{2E /[a(e’)2]}r]  

+ c2 exp [-i√{2E /[a(e’)2]}r]

behaves as a free particle, i.e. it oscillates.  There are no
conditions on E since R is finite for all E’s.  So all the values of E
are allowed, i.e. continuous values of E



R is the radial part of a continuum eigenfunction, Yl
m is the

angular part.  The wavefunction is not normalized in the usual
sense, as with a free particle.

 Bound States: E < 0

R ≈ c1 exp [√{-2E /[a(e’)2]}r]  

+ c2 exp [-√{-2E /[a(e’)2]}r]

For R to be finite as r ⇒  ∞, c1 = 0.  Then

R ≈ c2 exp [-√{-2E /[a(e’)2]}r]

=  c2 exp [-c r], c = √{-2E /[a(e’)2]

Choose a form for R for all regions (not just large r) to be:

R(r) = e-cr K(r)

where K(r) is a power series in r.  Note that K(r) will have to be
truncated in order to have the appropriate asymptotic form of R.

So R’ = -c e-cr K(r) + e-cr K’(r) = (-cK + K’) e-cr

and R” = -c e-cr (-cK + K’) + (-cK’ + K”) e-cr

= e-cr (c2K -2cK’ + K”)

Substitute these expressions into
R” + (2/r) R’ + {2/[a(e’)2] E + (2/a) Z/r - [l(l+1)]/r2}R = 0

or R” + (2/r) R’ + {-c2 + (2/a) Z/r - [l(l+1)]/r2}R = 0

or e-cr (c2K -2cK’ + K”) + (2/r) (-cK + K’) e-cr



+ {-c2 + (2/a) Z/r - [l(l+1)]/r2} e-cr K(r) = 0

Divide through by e-cr to get an eq. in K:

K” + K’ (-2c + 2/r) + K (c2 - 2c/r - c2  + 2Z/(ar)

- [l(l+1)]/r2) = 0

Multiply by r2

K”r 2 + K’ (-2c r2 + 2r) + K{(- 2cr + 2Z/a)r - l(l+1)} = 0
           ∞

Let K(r) = rsM(r), where M(r) = Σ bjr
j

          j = 0

Then K’ = srs-1 M + rs M’,

K” = s(s-1) rs-2 M + s rs-1 M’ + s rs-1 M’ + rs M”

= s(s-1) rs-2 M + 2 s rs-1 M’ + rs M”

Substitute into the Eq. for K:

r2[s(s-1) rs-2 M + 2 s rs-1 M’ + rs M”]

+ (2r - 2cr2) [srs-1 M + rs M’]

+ {(- 2cr + 2Z/a)r - l(l+1)} rs M = 0

Rearrange:

M” r s+2 + M’ [2srs+1 + (2r - 2cr2)rs]

+ M[s(s-1)rs + (2r - 2cr2)srs-1+ {(- 2c + 2Z/a)r - l(l+1)} rs ] = 0



= rs {M”r 2 + M’ [2sr + 2r - 2cr2]

+ M[s2 - s + 2s -2csr + (- 2c + 2Z/a)r - l(l+1)]}

Or M”r2 + M’ [(2s+1)r  - 2cr2]

+ M[s(s+1) + 2(Z/a - c - cs)r - l(l+1)] = 0

To find s, consider the behavior at r = 0:

           ∞

M(r) = Σ bjr
j = b0+ b1r + b2r

2 + b3r
3 + ...

       j = 0

M(r=0) = b0

M’(r) = b1 + 2b2r + 3b3r
2 + ...

M’(r=0) = b1

M”(r) =  2b2 + 6b3r + ...

M”(r=0) =  2b2

So, the only term not multiplied by r in the eq. for M is:

[s(s+1) - l(l+1)]M = [s(s+1) - l(l+1)] b0, at r=0

Since b0 is not equal to 0, then must have s(s+1) - l(l+1) = 0

or s = l or -(l+1)

These roots correspond to two linearly independent solutions.
Which ones can we use?

∞

R(r) = e-cr K(r) = e-cr rs  Σ bjr
j

j=0



Since s was determined from the condition r = 0, consider R for
small r:

e-cr = 1 - cr + c2r2/2 - .... ⇒  1 as r ⇒  0

So R(r) ⇒  rs b0 as r ⇒  0 for s = l, -l-1

= rl b0 = 0 at r = 0

= b0 /r
l+1 ⇒  ∞ at r = 0

So let s = l and determine R by solving for a Recursion Relation
for the bj’s

R(r) = e-cr rl M(r)

Substitute s = l into

M”r 2 + M’ [(2s+1)r  - 2cr2]

+ M[s(s+1) + 2(Z/a - c - cs)r - l(l+1)] = 0

M”r 2 + M’ [(2 l+1)r  - 2cr2]

+ M[l(l+1) + 2(Z/a - c - cl)r - l(l+1)] = 0

M”r 2 + M’ [(2 l+1)r  - 2cr2] + M2[Z/a - c(l + 1)]r = 0

M”r + M’ [(2 l+1)  - 2cr] + M2[Z/a - c(l + 1)] = 0

Rewrite the eq. as a factor {...} times rj  in order to get the
recursion relation:    ∞

M(r) = Σ bjr
j = b0+ b1r + b2r

2 + b3r
3 + ...

    j = 0



M’(r) = b1 + 2b2r + 3b3r
2 + ...

     ∞
=  Σ jbjr

j-1   (use as coefficient of the r1 term)
    j = 1

     ∞
=  Σ j bj r

j-1

    j = 0

Let j = k+1 & rewrite the summation

     ∞
=  Σ (k+1) bk+1 r

k

         k= 0

But j & k are dummy indices, so

                     ∞

M’(r) =  Σ (j+1) bj+1 r
j  (use as coefficient of the r0 term)

                    j = 0

M”(r) =  2b2 + 6b3r + ...

            ∞
=  Σ  j(j-1) bj r

j-2

    j = 2

            ∞
=  Σ  j(j-1) bj r

j-2

    j = 1

            ∞
=  Σ  j(j-1) bj r

j-2

    j = 0

Let j = k+1 & rewrite the summation            ∞

M”(r)=  Σ  (k+1)k bk+1 r
k-1 (use as coefficient of the r1 term)

    k = 0

But j & k are just dummy indices, so could write the summation
as

      ∞



M”(r) =  Σ  (j+1)j bj+1 r
j-1

       j = 0

Substitute these power series into

r M” + 2(l + 1 - cr) M’ + 2 (Z/a - c - cl) M = 0
  
         ∞          ∞             ∞         

r Σ  (j+1)j bj+1 r
j-1 + 2(l + 1) Σ (j+1) bj+1 r

j   - 2cr  Σ j bj r
j-1

     j = 0                                         j = 0           j = 0    ∞
+ 2[Z/a - c(l+1)] Σ bjr

j = 0
   j = 0

          ∞

= Σ [(j+1)j bj+1r
j
 + 2(l + 1)(j+1) bj+1 r

j - 2c j bjr
j+ 2[Z/a -

     j = 0

c(l+1)]bjr
j]

Get a Recursion Relationship for bj+1 in terms of bj by setting the
coefficient of rj = 0:

0 = [j(j+1) + 2(l+1)(j+1)] b j+1 + [-2cj + 2(Z/a-c(l+1)] bj

b j+1 /bj = 2 [cj - Z/a  + c(l+1)]/[j(j+1) + 2(l+1)(j+1)]

How does R(r) behave as r ⇒  ∞ ?

(1) Consider the behavior of the series for large r (i.e. terms in
large j will dominate)

b j+1 /bj = 2 [- Z/a  + c(j+l+1)]/[j(j+1) + 2(l+1)(j+1)]

⇒ 2cj/j2 = 2c/j for large j

(2) Consider the behavior of the power series e2cr for large r.
Look at the successive terms:

e2cr = 1 + 2cr + ... +  (2c)jrj/j! + (2c)j+1rj+1/(j+1)! + ...



(j+1)st-coefficient/j-th coefficient =[(2c)j+1/(j+1)!]/[ (2c)j/j!]

= 2c j!/(j+1)! = 2c/(j+1) ⇒  2c/j for large j

So the power series M(r) behaves as e2cr for large r

M(r) ⇒  e2cr for large r

So R(r) ≈ e-cr rl e2cr = rl ecr ⇒  ∞ as r ⇒  ∞

So the power series must be truncated after a finite # of terms
(choose k).  As with the Harmonic Oscillator, truncation of the
power series results in energy quantization.

If the series is truncated at k,

bk+1 = 0 = bk+2 = bk+3,....

Since bk is not equal to zero, the coefficient of bk in the power
series must be set equal to zero in order to make that term zero
(& all higher bk’s zero):

2[ck - Z/a + c(l+1)] = 0

c(k + l + 1) = Z/a k = 0,1,2,3,...

Define a new quantum number:

n = k + l + 1 n = 1,2,3,...

n-1 = k+l k = 0,1,2,3,...

So n-1 > l (equal to l when k = 0)



Therefore, l = 0,1,2,...n-1

So cn = Z/a c2n2 = (Z/a) 2 c = √{-2E /[a(e’)2]}

-2E n2 /[a(e’)2] = (Z/a) 2

Solve for E: E = -[Z2/n2] [(e’)2/(2a)] a = h2/[µ(e’)2]

E = -[Z2/n2] [(e’)4µ/(2 h2)

As n ⇒  ∞, E ⇒  0. See Fig. 6.6
E < 0 Discrete States,  E > 0, Continuum States.

ν = frequency of absorption or emission = c/λ

1/λ = wavenumber = ν/c = ∆E/hc, ∆E = E2 - E1

=  -Z2(e’)2/(hc2a)[1/n2
2  -  1/n1

2]

=  Z2(e’)2/(hc2a)[1/n1
2  -  1/n2

2]

For Z = 1, R = (e’)2/(hc2a) = 109,677 cm-1

= Rydberg constant for H (Balmer obtained by fitting)



Are the Hydrogen Atom levels degenerate?

The energy depends only on n, but each state ψ depends on
n, l, m

n = 1,2,3,...
l = 0,1,...(n-1) n values of l
m = -l, -l+1,...(l-1),l 2l+1 values of m      n-1

So each bound state has degeneracy = Σ (2l+1)
      l = 0

              n-1                   n-1

= 2 Σ l  +  Σ 1 = 2 (1/2)(n-1)n + n = n2
      l = 0                l = 0

Each continuum state is infinitely degenerate because there are
no restrictions on l.

Hydrogen Atom Bound State Wavefunctions and Probability
Densities   ∞

We found that R(r) = e-cr rl M(r) with M(r) = Σ bj r
j

  
j = 0

But we had to truncate M after term j = k, where k = n - l - 1

  n-l-1

So M(r) = Σ bj r
j

 j = 0

We also found that c = Z/(na)    &    a = h2/[µ (e’)2]

So      n-l-1

Rnl(r) = rl e-[Zr/(na)] Σ bj r
j

       
j = 0

and ψnlm (r, θ, φ) = Rnl(r) Yl
m (θ, φ)

= Rnl(r) Slm(θ) e imφ √(2π)

Nodes of Rnl:



Rnl = 0 r = ∞
= 0 r = 0,   l not equal to 0
= 0 M(r) = 0

M(r) is a polynomial of degree (highest power of r) n-l-1

So there are (n-l-1) roots or nodes of this polynomial

Typical energy units:

1 eV (electron volt) = 1.6022 x 10-19 J = 1.6022 x10-12 erg

Find the Bohr radius (radius of electron in first Bohr orbit, ao) :

For the ground state of the H atom, E1 = - 13.60 eV
(This is the ionization energy)



Reduced mass = µH = mp me/(mp + me),

where mp = mass of proton, me = mass of electron;

mp + me ≈ mp so µH = me

Then a = h2/[µ (e’)2] ⇒  ao = h2/[ me (e’)2] = 0.529 Angstroms

(But Bohr considered the electron to be confined to a circle.
This is impossible, according to the Uncertainty Principle.)

Hydrogen-Like Atom Wavefunctions:

ψnlm (r,θ,φ)  = Rnl (r) Yl
m (θ,φ) = Rnl (r) Sl,m (θ) eimφ/√(2π)

See Table 5.1 for the values of Sl,m (θ), Table 6.1 for Rnl (r)

Ground State Wavefunction: n=1, l=0, m=0

Y0
0 (θ,φ) = S0,0 (θ) e0/√(2π) = (√2/2) ⋅1 ⋅ /√(2π) = 1/√(4π)

R10 (r)  = b0 e
-Zr/a

Find b0 by normalization:

∫0
∞   R10 (r) 2 r2 dr = 1 =   b0 2 ∫0

∞ e-2Zr/a r2 dr

=   b0 2 2!/(2Z/a)3 ⇒  b0 = (2Z/a)3/2/√2 = 2 (Z/a)3/2

Therefore,

R10 (r) =  2 (Z/a)3/2 e-Zr/a

And
ψ100 (r,θ, φ)  = 2 (Z/a)3/2 e-Zr/a√(4π) = (Z/a)3/2 e-Zr/a√π



Old spectroscopic notation relates the values of l to letters:

l = 0(s), 1(p), 2(d), 3(f), 4(g), 5(h), 6(i), 7(k).... (no j)

For n=2, l = 0,1. For l = 0, m = 0 (ψ2s);

For l = 1, m= -1 (ψ2p-1 or ψ21-1), 0 (ψ2p0 or ψ210), 1 (ψ2p+1 
or ψ211)

Using Tables 5.1 & 6.1,

ψ21-1 (r,θ, φ) = R2p (r)Y1
-1 (θ,φ)

= 1/(2√6) (Z/a)5/2 r e-Zr/2a 1/√(2π) √3/2 sin θ e-iφ

= 1/(8√π) (Z/a)5/2 r e-Zr/2a sin θ e-iφ

Probability Density

The probability of finding the electron between r+dr, θ+dθ, and
φ+dφ is

ψ 2 dτ =  Rnl (r) 2 r2 dr  Yl
m (θ,φ) 2 sin θ dθ dφ,

where dτ = r2 dr sin θ dθ dφ.  If we just consider the probability
of finding the electron in the shell r+dr with no restrictions on θ
& φ, then we can integrate over θ & φ to get the Radial
Distribution Function (i.e. the probability density for the radial
part of the wavefunction):

∫02πdφ ∫0π sin θ dθ Y l
m (θ,φ) 2  Rnl (r) 2 r2 dr =  Rnl (r) 2 r2 dr



since the Spherical Harmonics are normalized.  The Radial
Distribution Functions for n = 1, 2, 3 are plotted in Fig. 6.8

The function a [Rnl (r) 2 r2 dr is plotted in Fig. 6.9.  Note that the
maximum in the 1s radial distribution function, a[R10(r)]

2r2,



occurs at r = a.  How could you prove this mathematically?
(Find the value of r for which ∂/∂r[a[R10(r)]

2r2] = 0.)

Construct Real Wavefunctions

Since ψnlm goes as eimφ, the hydrogenlike ψ‘s are imaginary.  For
convenience, it is easier to use real wavefunctions.  We can
construct the real wavefunctions by taking certain linear
combinations of the imaginary wavefunctions.  They will still be
an eigenfunction of the Hamiltonian operator with the same
eigenvalue.  We already proved that

If H ψN = E ψN, N = 1,...,m

then H (ψ1 + ... +  ψm) = E (ψ1 + ... +  ψm).



In other words, a linear combination of eigenfunctions of an
operator will also be an eigenfunction of the operator with the
same eigenvalue.

From Tables 5.1 & 6.1

ψ2p1 = 1/(8√π) (Z/a)5/2 r e-Zr/(2a) sin θ eiφ

ψ2p-1 = 1/(8√π) (Z/a)5/2 r e-Zr/(2a) sin θ e-iφ

2cos φ = eiφ + e-iφ

So ψ2p1 + ψ2p-1 = 1/(8√π) (Z/a)5/2 r e-Zr/(2a) sin θ (eiφ + e-iφ)

= 1/(8√π) (Z/a)5/2 r e-Zr/(2a) sin θ 2cos φ

= 1/(4√π) (Z/a)5/2 r e-Zr/(2a) sin θ cos φ

Remember x = r sin θ cos φ. So ψ2p1 + ψ2p-1

= 1/(4√π) (Z/a)5/2 e-Zr/(2a) x

Define ψ2px = 1/√2 (ψ2p1 + ψ2p-1)

= 1/[4√(2π)] (Z/a)5/2 e-Zr/(2a) x,

where 1/√2 is a normalization factor. Prove that ψ2px is
normalized. In the next chapter, we will see that the Spherical
Harmonics are orthonormal or orthogonal functions.  That is

∫ Yl
m Yl’

m’ dτ = δll’δmm’, where δll’=0 unless l=l’

So if l=1 & l’=-1, the integral is zero.

∫ ψ 2px 2 dτ = ∫ψ2px
* ψ2px dτ



 = ∫1/√2 (ψ2p1 + ψ2p-1)
* 1/√2 (ψ2p1 + ψ2p-1) dτ

= 1/2 (∫ψ2p1
* ψ2p1 dτ + ∫ψ2p1

* ψ2p-1 dτ + ∫ψ2p-1
* ψ2p1 dτ

+ ∫ψ2p-1
* ψ2p-1 dτ)

The first & fourth terms, ∫ψ2p1
* ψ2p1 dτ & ∫ψ2p-1

* ψ2p-1 dτ, are
equal to 1 because the hydrogenlike wavefunctions are
normalized. The second & third terms are equal to 0 because
they contain spherical harmonics with different m values (+1 & -
1) & δmm’=0 unless m=m’. One can show this by looking at the
integral over φ for m= +1 & -1:

∫0
2π (e-iφ)*(eiφ)dφ = ∫0

2π e2iφ dφ

= 1/2  ∫04π eiy dy = 1/2  eiy  
0
4π = 1/2 (cos y + i sin y)   

0
4π

= 1/2 (cos 4π + i⋅0 - cos 0 - i⋅0) = 1/2 (1-1) = 0
So

∫ ψ 2px 2 dτ = 1/2 ( 1 + 0 + 0 + 1) = 1

Other real wavefunctions for n=2:

ψ2py = 1/(i√2) (ψ2p1 - ψ2p-1)

= 1/(4√(2π)) (Z/a)5/2 r sin θ sin φ e -Zr/(2a)

= 1/(4√(2π)) (Z/a)5/2 y e -Zr/(2a)

ψ2pz = ψ2p0 = 1/√π (Z/a)5/2 z e -Zr/(2a)

Table 6.2 gives the real wavefunctions for n=1,2,3

Are the real wavefunctions eigenfunctions of L2 & Lz?



L2 ψ2p-1 = l(l+1)h2ψ2p-1 = 2 h2ψ2p-1

L2 ψ2p1 = l(l+1)h2ψ2p1 = 2 h2ψ2p1

L2 (ψ2p1 + ψ2p-1) = 2 h2(ψ2p1 + ψ2p-1) yes

But Lzψ2p-1 = m hψ2p-1 = - hψ2p-1

Lzψ2p1 = m hψ2p1 = hψ2p1

Lz(ψ2p1 + ψ2p-1) = hψ2p1 - hψ2p-1= h (ψ2p1 - ψ2p-1) no

Hydrogenlike Orbitals

Fig. 6.14 shows the probability densities for some hydrogen
atom states

Fig. 6.13 shows the shapes of some hydrogen atom orbitals.
The 2s orbital has one spherical node (not visible); the 3s orbital
has two spherical nodes (not visible). The 3pz orbital has a
spherical node (dashed line) & a nodal plane (xy plane).  The
3dz**2  has two nodal cones.  The 3dx**2-y**2  orbital has two
nodal planes.



The Zeeman Effect

When the hydrogen atom is put into an external magnetic field, a
triplet of lines is observed for the 1s → 2p transition, rather than
the single line seen in the absence of a magnetic field.  This
means that, in the presence of the external magnetic field, the 2p
state is no longer degenerate.  



Magenetic Dipole:  The motion of an electron around a closed
loop results in a magnetic dipole vector µ of magnitude

µ  = µ = iA

where i is the current (1 amp = 1 Coul/sec) & A is the area of
the loop in square meters.  If the loop is circular,

A = π r2

where r is the radius.  The current, i, is equal to

i = Qv/(2πr)

where Q is the charge & v is the velocity. So

µ = iA = [Qv/(2πr)] π r2 = Qvr/2.

For a noncircular loop, the magnetic moment due to orbital
motion is

µL = Q/2(r x v).

Since L = r x p & p = mv, then

µL = Q/(2m) L
where the direction of µ & L is perpendicular to the plane of
motion.

For an electon, µL = -e/(2me) L,

where -e is the charge on the electron & me is the mass of the
electron.  

Since  L  = h√[l(l+1)],



then µ L  =  -e/(2me) L  =  -e /(2me)   L

= e/(2me) h√[l(l+1)].

The Bohr magneton is defined by

βe = eh/(2m e) = 9.274x10-24 J/T

T=Tesla; 1 Tesla = 1 NC-1 m-1 s = 1 N/(amp⋅m)

So µ L = βe √[l(l+1)].

The energy of interaction between a magnetic dipole,µ, & an
external magnetic field is

EB = -µ ⋅ B = e/(2m) L ⋅ B.

Assume the magnetic field is applied in the z-direction:

B = B k

and EB = e/(2m) (Lxi + Lyj + Lzk) ⋅ (Bk) = e/(2m) LzB

EB = (βe/h) LzB

So the corresponding Hamiltonian operator for the interaction of
the electron with the magnetic field is

HB = (βe/h) LzB.

So the Hamiltonian that describes the behavior of the hydrogen
atom in the magnetic field is the sum of the Hamiltonian in the
absence of the field & HB:

(H + HB) ψ = E ψ.



Since we know the eigenfunctions of Lz, we know ψ:

ψ = R(r) Yl
m(θ, φ).

(H + HB) ψ = (H + HB) R(r) Yl
m(θ, φ)

= H R(r) Yl
m(θ, φ) + HB R(r) Yl

m(θ, φ)

H R(r) Yl
m(θ, φ) = (-Z2/n2) [(e’) 2/(2a)] R(r) Yl

m(θ, φ)

HB R(r) Yl
m(θ, φ) = (βe/h) LzB R(r) Yl

m(θ, φ)

= (βe/h) B R(r) Lz Yl
m(θ, φ)

= (βe/h) B R(r)  mhYl
m(θ, φ)

= βem B R(r)Yl
m(θ, φ)

(H + HB) ψ = {(-Z2/n2) [(e’) 2/(2a)] + βem B} R(r)Yl
m(θ, φ)

So E = {(-Z2/n2) [(e’) 2/(2a)] + βem B}

For each n, there is a different energy depending on m.  This
removes the m-fold degeneracy.  

In the presence of the magnetic field, the n=2 level (1 line)

E2s = E2p = E2 = (-Z2/4) [(e’) 2/(2a)]

is split into 3 levels (3 lines) with

E2p+1 = E2 + βeB (m = +1)

E2p0 = E2s = E2 (m = 0)



E2p-1 = E2 - βeB (m = -1)




