ANGULAR MOMENTUM

So far, we havetudied simple models in which a particle
IS subjected to a force in one dimension (particle ibox,
harmonic oscillator) or forces in three dimensions (particle in a

3-dimensionabox). Wewere able towrite the Laplacian[J?,

in terms ofCartesian coordinategassumingy to be a product

of 1-dimensionalwavefunctions. Byseparation ofvariables,
we were able to separate tlsehrodingerEq. into three 1-
dimensional egs. & to solve them.

In order to discuss the motiaof electrons inatoms, we
must deal with a force that is spherically symmetric:

V(r) O 1/r,

where r is the distance from thecleus. In this case, we can
solve the SchrordingeEq. by working in spherical polar

coordinateqr, 0, ¢), rather than Cartesiatoordinates. This
allows us to separate the Schrddinger into three egs. each
depending onone variable--r,8, or ¢ (See Fig. 6.5 for

definition of r,8, and¢).



Y = 1(x) 9(y) h(z) or Y =R(r)©(0) ¢ (¢)
From Fig. 6.5:
F=x+y +27

X =1 SinB cos@

y =rsin@sing
Z=rcosf
tan0@ = r/x

cosO = z/( ¥ + y? + Z2)}2

Since (0% = 8%0x* + 8%0y> + 8%0z> , by using the above
functional relationships, one can transfdrrinto

(%= 0%/ar* + (2/r)olor + 1/(rh?) L?
where
L? = - h? (0°/06° + cotB 9/06 + (1/ sirf 8) (0%0¢’)
L2 is the orbital angular momentum operator.
Orbital Angular Momentum is the momentum of a particle due
to its complex (non-linear) movement Bpace. Thisis in

contrast to linear momentum, which is movement in a particular
direction.



Consider the classical picture of a particle of mass m at distance
r from theorigin. Letr (here bold type indicates a vector) be
written as

r=ix+jy+kz

wherei, j, & k are unit vectors in the&, y, & z-directions,
respectively. Then velocity, is given by

v = dr/dt =i dx/dt +j dy/dt +k dz/dt
=ive+jv,+ky,
ans linear momentunp, is given by
p=mv=imy,+jmy +kmy,
=iptip+kp,
ThenL, the angular momentum of a particle, is given by
L=rxp
The definition of a vector cross product is
A xB = A B sin8,

where A is the magnitude of vectar, etc. One can determine
the value of the cross product from a 3x3 determinant:

i ]k



A, A, A,

AXB = B, B, B,
A, A,
AXB=i (-1 B, B,
X AZ
+ oy L B, B,
X y
+ Kk (1) B, B,

=i (A,B,-AB,)-j (A,B,- AB)) +k (A,B, - AB)
So L=rxp=ilL,+]L,+kL,
with L,=YR-2R

Ly=Zp-Xp,

L,=Xp-YR,

The torquefg, acting on a particle is



T=r XxXF=dL/dt

Whent = 0, the rate of change of the angular momentum with

respect to time is equal tero, & theangular momentum is
constant (conserved).

In Quantum Mechanics there are two kinds of angular
momentum:

Orbital Angular Momentum - same meaning as in classical
mechanics

Spin Angular Momentum - no classical analog; will be
covered in a later chapter

One can obtain the quantum mechanical operators by replacing
the classical forms by their guantum mechanical analogs:

X - X, p, — -ihdlox, etc.
So L, = -ih (y 0/0z - zdldy)
L, = -ih (z 0/0x - X 0/0z)
L, = -ih (x d/dy - y d/0x)
ForO°need =L [L
Definition of a dot product:

A LB = (A +]A, +kA,) iB, +]B, +kB,)



= AB co0sb6

The unit vectors are perpendicular to each othe, s®® and
| Oj =0 =1 Ok, etc. For the doproduct of a vector with
itself, 8 = ®, soi [0 = 1, etc. Therefore,

A[B=AB,+AB, +AB,
and

ATA=AZ+A2+AZ= A
So that

L*=L2+ L + L7

{Note that this is how the expression for the Laplacian is
derived, since

O =i0dlox +j 0ldy +k 0/0z.
Therefore
0%= 0 [ = = 8%/0x* + 8°/dy? + 0%/0Z7°%}

Investigate the commutation relationships between the
components of the orbital angular momentum:

Lo L]=7

Lo Ll=L,L,-L, L,



= - ih (y 0/0z - z0/9dy) (-ih) (z 0/0x - x 0/0z)
- (-ih) (z0/0x - x d/0z) (- ih) (y 0/0z - z0/dy)
= - b*{y 0/0z (z0/0x - x 0/0z) - z0/dy (z 0/0x - x 0/0z)
- 20/0x (y 0/0z - zdldy) + xdl0z (y d/dz - zd/dy)}
= - h*{y (0/0x + z3/0z 3/0x - x 0°/0Z°)
- Z (z0/dy d/ox - x d/ay 0/0z)
-z (y 0/ox d/0z - zolox d/ay)
+ X (y0°/0Z* - 013y - z0/0z 0/dy)}
= - h* { (-yx + xy) 0%0z* + ( yz9/0z 0/0x - zy 0/0x 0/0z)
+ (-Z0/0y 0/0x + Z dldx d/dy)

+ ( zx0/0y 0/0z - xz d/0z d/dy) + (y 0/0x - x d/dy)}

Since the first four terms are zero,
[L,, L] = (ih)? (y 9/ox - x dlay)
= (ih) {-ih (x d/dy - y 0/0x)}

=ihL,



The other expressions can be given by symmetry & cyclic
permutation: (X, VY, z» (Y, Z, X) - (z, X, Y)

LoLl=ihl, [L,Ll=ihl, [L,L]=ihL,

L2 L]="?
L% L] =L+ L2+ LA L]
=LA L+ L2 LI+ L5 L
But[L? L]=L2L.-L L2=L L L-L L L =0
So [L% L] =L L]+ LA L]
=12 L- L L2+ L2 L - L, L,
=L, L, L-LL L+, L, L-LL,L,

Lets look at some related forms which can be used to simplify
the above expression:

Ly, LJL,+L, [L,, L]

y 1
=(L, L,-L, L)L, +L, (L, L,-L,L)
=L LL-LLL+LLL-LLL

The first & fourth terms cancel, giving

L,,LJL,+L,[L,, Ll=L, L, L-L L L,

y )



Similarly, [L,,L]L,+L,[L,,L]=L, L L-LL,L,
So, 1B L= [L,,LlL, +L,[L,, L]
+[L,, LJL, +L,[L,, L]

=-ihL,L,-ihL L, +ihL L, +ihL,L,=0
One can also show that

L% L]=0=[L% L]
What is the Physical Sgnificance of Operators that Commute?

If A & B commute, ¥ can simultaneously be an
eigenfunction of bothoperators. Thatmeans that the
observables a & b can be measured simultaneousy iAWY

& BY =bW.

Example: position & momenturoperators. In problem
3.11 we showed that

[x, pd = 1h.

That means that position & momentum cannot be measured
simultaneously--i.e. can’t know definite values for x & p

Example: position & energy. Since

[x, H] = (iym) p,,



can’'t assign definite values fosition & energy. Astationary
stateW has a definiteenergy, so ishows a spead of possible
values of x.

Example: Derive thddeisenber g Uncertainty Principle--
from the product of the standard deviation of property A & the
standard deviation of property B.

<A>: average value of A

A, - <A> : deviation of the i-th measurement from the
average value

o, =A A : standard deviation of A; measure of the spread
of A or uncertainty in the values of A.

AA=<(A-<A>)2
=< A2-2 A <A> + <A1
= (< A>- 2 <A> <A>+ <A>?)L2
= (< A>>- <A>?)Y2

One can show that

(AA) (AB) > (1/2) ¥ [AB] Wdt O

If [A,B] = 0, then can have both A =0 & A B =0,
which  means both observables can be known precisely.

For Ax) (Ap)=(1/2) T W (ih) W dt O



>(1/2)h00) W Wdt O
For a normalized wavefunctioff, W™ W dt 0= 1.
Oi0=(-ii)¥?=(1)"=1
So A x) (A p) = (1/2)h.

Operators that communte have observables that can be
measured simultaneously. $te operators have simultaneous
eigenfunctions.

To return to Angular Momentum--

Since I & L, commute, we want tdind the simultaneous
eigenfunctions. Since °L commutes with each of its
components (L, L,, L,) we can assign definite values to paifr L
with each of the components

L% L L% L L% L

X z

y

But since the components dodmmute with eaclother, we
can't specify all the pairs--only 1. Arbitrarily choosé,(L,).

Note that 2 means the square of the magnitude of the vector L.

One can convert from Cartesian to Spherical Polar coordinates
& derive expressions for,l L, & L, that depend only on 8,

& O

L, =1h (sin@d/d6 + cosB cos 0/0)



L, =-1h (cos@d/06 - cotB sin @ 0/0q)
L,=-ihadlog
L*=L2+ L2+ L7

= - h* (0°/06° + cot6 9/00 + (1/sin*0) 0°/0¢)

Read through the derivation of the simultaneous eigenfunctions
of L? and L, in Chapter 5. It involves techniques that we have
used--separtation ofariables,recursionformulas, etc. The
result--the simultaneous eigenfunctions of and L, are the

Spherical Harmonics, ¥(6, ¢).
L2Y,"0,9) =1 (I +1)h*Y (0,9, |1=0,1,2,..
| : quantum number for total angular momentum
L,Y™(6, 9 =mh Y™, @,m=-, -1+1,..1-1, |

m : quantum number for angular momentum in
the z-direction

The ranges on the quantum numbers result from

forcing finite behavior ainfinity on the wavefunctionj.e. the
wavefunction must be well-behaved in all regions of space

Y™, @) = [(2+1)/(4m)]~2 [(1-OmO)Y/( 1+Omr)1 2

x P (cos@) ém®



= (1/2m)'? S (6) €™
Y ™ are the Spherical Harmonics
P are the Associated Legendre Functions
S () = [(21+1)/2]72[(I-TCmD)Y/( 1+0mO)1Y* B (cosB)
Values for §,(0) are given in Table 5.1:
=0 S.4(0) =v2/2
| =1 S «(6) =V6/2 cos
S,.1(0) =V3/2 sinB =S, ,(6)
| =2 S ((6) =V10/4 (3 cos6 - 1)
S,.1(8) =V15/2 sinB cosB = S, ,(6)
S,.0) =V15/4 sif 8 =S, ,(6)

We will use these functions as the angular part of the
wavefunction for the hydrogen atom & the rigid rotor.

Since L, and L, cannot be specifiedye can only say that the
vectorL can lie anywhere on the surface of a cone defined by
the z-axis. See Fig. 5.6






The orientations of with respect to the z-axis are determined
by m. See Fig. 5.7

OL20= LI = 1(1+1) h?
COLCE= [1(1+21)]%2h
= length ofL
m h = projection ofL
onto z-axis
For each eigenvalue ofLthere are (21) eigenfunctions of L
with the same value df but different valuesf m. Therefore,

the degeneracy isi®1).

The Spherical Harmonic functions are importanthe central
force problem--in which a particle moves under a force which is
due to a potential enerdynction that issphericallysymmetric,
l.e. one that depends only on the distance of the particle from

the origin. Thenthe wavefunction can be separated as a
product

W =R(r) Y,"(6, ¢)
Spherical Harmonics

give the angular dependenceyofor the H atom



describe the energy levels die diatomic rigidrotor, a
model for rotational motion in diatomic molecules



