
THE HARMONIC OSCILLATOR

Features

Example of a problem in which V depends on coordinates

Power series solution

Energy is quantized because of the boundary conditions

Model for vibrational motion of a diatomic molecule

To solve the Schrödinger Eq. for molecules, make the Born-
Oppenheimer Approximation:

Since the electrons are moving much faster than the nuclei, 
assume that the motions are separable & that the 
wavefunction can be written as a product of nuclear & 
electronic wavefunctions

ψ = ψelec ψnucl

This leads to two separate Eq. to solve--

one for electronic energy (assuming fixed nuclei)

one for nuclear energy (in the effective potential field 
of the electrons)

Assume that the nuclear energy can be divided up into
contributions from

translation, rotation, vibration

Or,  ψnucl = ψtrans ψrot ψvib



with E nucl = Etrans  + Erot  + Evib

E total = Enucl  + Eelec

We will see later that the vibrational part of the Schrördinder Eq.
for a diatomic molecule is similar to the Eq. for the harmonic
oscillator.

The One-Dimensional Harmonic Oscillator:

Classical Treatment:

A single particle of mass m is attracted to the origin by a
linear (i.e. first power of x) restoring force Fx

 Fx = - k x, k = force constant

Since F = m a a = acceleration

then -k x = m a = m (d2x/dt2)

or (d2x/dt2) + (k/m) x = 0

This is a 2nd order linear differential eq. with constant
coefficients p = 0, q = k/m

Then  s = + i√q

and x(t) = c1e
it√(k/m) + c2e

-it√(k/m)

= (c1 + c2) cos (t √(k/m)) + i (c1 - c2) sin (t √(k/m))

x(t) = A cos (t √(k/m)) + B sin (t √(k/m))



= A’ sin (t √(k/m) + b)

= A’ sin (t 2 π ν  + b), SQRT(k/m) = 2 π ν

******************************************
NOTE: A = A' sin b; B = B' cos b

sin(x+y) = sin x cos y + cos x sin y

So A’ sin (t √(k/m) + b)

= A' {sin (t √(k/m)) cos b + cos (t √(k/m)) sin b}

= (A' cos b) sin (t √(k/m)) + (A' sin b) cos (t √(k/m))

= B sin (t √(k/m)) + A cos (t √(k/m))

*******************************************

Since force by definition is the negative first derivative of the
potential energy, one can derive an expression for V:

Fx = -dV/dx = - k x

Integrating both sides gives

V(x) = (k/2) x2 + C parabolic function

Choosing C = 0, sets the minimum of V at x=0

Kinetic energy: T = (m/2) v2, v = velocity = dx/dt

T = (m/2) (dx/dt)2

If x(t) = A sin (t 2πν  + b),



then dx/dt = A 2πν cos (t 2πν  + b),

and T = (m/2) A2 (2πν)2 cos2 (t 2πν  + b)

= (k/2) A2 cos2 (t 2πν  + b)

Also V = (k/2) x2

= (k/2) A2 sin2 (t 2πν  + b)

Since E = T + V

E = (k/2) A2 {sin2 (t 2πν  + b) + cos2 (t 2πν  + b)}

= (k/2) A2

Quantum Mechanical Treatment:

H = T + V

= (-h2/2m) d2/dx2 + V(x)

= (-h2/2m) d2/dx2 +  (k/2) x2, k = m (2πν)2

= (-h2/2m) d2/dx2 + 2π2ν2mx2

= (-h2/2m) (d2/dx2 - α x2), α = 2πνm/ h

H ψ = E ψ

(-h2/2m) (d2/dx2 - α x2) ψ = E ψ

d2ψ /dx2  + ( 2mE/ h2 - α2 x2) ψ = 0



This is a 2nd order homogeneous liner differential eq. with

P(x) = 0   and   Q(x) = ( 2mE/ h2 - α2 x2)

Since we don’t have constant coefficients, must try a different
method of solution- power series

Let ψ(x) = e-αx**2/2 f(x), where f(x) is a power series & 
x**2 is x squared.

Prove to yourself that

d2ψ /dx2 = e-αx**2/2 (d2f/ dx2  - 2αx df/dx - α f + α2 x2f)

Then d2ψ /dx2  + ( 2mE/ h2 - α2 x2) ψ = 0 gives

d2f/ dx2  - 2αx df/dx + (2mE/ h2 - α) f = 0

Assume f can be expanded in a Taylor Series around x=0:

  ∞
f(x) = Σ cn x

n

  n=0

Solve for a recursion relation for the cn from

d2f/ dx2  - 2αx df/dx + (2mE/ h2 - α) f = 0

First write df/dx & d2f/ dx2 in terms of power series:

f = c0 1 + c1 x + c2 x
2 + c3 x

3 + ...
∞       ∞

df/dx = c1 + c2 2x + c3 3x2 + ... = Σ cn nxn-1 = Σ cn nxn-1

      n=1      n=0
 ∞

d2f/ dx2 = c2 2 + c3 6x + ... = Σ cn n(n-1)xn-2



n=2

Convert to a sum from 0 to ∞:

Let n = k+2, then when n=2, k=0 and
∞

d2f/ dx2 = Σ ck+2 (k+1)(k+2)xk

 k=0

Since n & k are dummy indices,
∞

d2f/ dx2 = Σ cn+2 (n+1)(n+2)xn
n=0

Plug these series into

d2f/ dx2  - 2αx df/dx + (2mE/ h2 - α) f = 0

and collect terms in xn:

Σ cn+2 (n+1)(n+2)xn - 2αx  Σ cn nxn-1

+ (2mE/ h2 - α) Σ cn x
n  = 0

Σ { cn+2 (n+1)(n+2) - 2αcn n + (2mE/ h2 - α) cn} x
n  = 0

Setting {...} = 0 leads to a recursion relationship for the cn’s:

cn+2 = {[ α + 2αn - 2mE/ h2]/(n+1)(n+2)} cn

Define c0 & c1, then calculate all the other cn’s

If c0 = 0 & c1 = 1, have a power series in odd powers of x

If c0 = 1 & c1 = 0, have a power series in even powers of x

The most general solution is a combination of the series



∞ ∞

Rewrite Σ cn x
n as  Σ c2n+1 x

2n+1

n=1,3,5... n=0
∞   ∞

Σ cn x
n as  Σ c2n x

2n

n=0,2,4,... n=0



  ∞      ∞

Then ψ = A e-αx**2/2  Σ c2n+1 x
2n+1 + B e-αx**2/2  Σ c2n x

2n

n=0    n=0

Determine A & B from the boundary conditions: i.e. the
wavefunction must be well-behaved as x → ∞. (As in the
particle in a box case, this leads to a quantum condition on the
energy.)

The factor e-αx**2/2 → 0 as x → ∞

But how does the series that multiplies this factor behave as
x → ∞? The series may overwhelm the damping effect of the
exponential factor as x → ∞.  Consider the ratio of coefficients of
x2n+2 and x2n:

For even n, substitute 2j for n in the recursion formula

c2j+2/c2j  = {α - 4αj - 2mE/h2}/(2j + 1)(2j + 2)

The series will be dominated by large x as x → ∞.  
So the terms in large j will be important because x is 
raised to powers of j.  For large j,

2j + 1 ≈ 2j, 2j + 2 ≈ 2j, 4αj > 2mE/h2

and c2j+2/c2j → 4αj/(2j)(2j) = α/j

For odd n, substitute 2j + 1 for n in the recursion formula

c2j+3/c2j+1  = {α  + 2α(2j + 1) - 2mE/h2}/(2j+2)(2j+3)

For large j, c2j+2/c2j → 4αj/(2j)(2j) = α/j

Can we find a power series expansion of some function that has
the same ratio of successive coefficients?  Yes--



eαx**2  = 1 + αx2 + ... + α j x2j/j! + α j+1 x2j+1/(j+1)! +...

Coefficient of x2j+1/ Coefficient of x2j

= [α j+1/(j+1)!]/ [α j/j!] = α/(j+1) → α/j for large j

******************************************

NOTE: (j+1)! = (j + 1) j!

So [α j+1/(j+1)!]/ [α j/j!] = [ α j+1/(j+1)j!]/ [ α j/j!] = α/(j+1)

******************************************

So each series in ψ must go as eαx**2  as j gets large.  

But eαx**2 → ∞ for large x

So, as x → ∞, ψ → A e-αx**2/2 eαx**2  + B e-αx**2/2 eαx**2

= (A + B) eαx**2/2 → ∞

If the two series could be truncated after a certain number of
terms, the multiplication by e-αx**2/2 would force ψ to 0 as
x → ∞.  If the highest term in the truncated series is xp, then by
l’Hospital’s Rule

lim xp e-αx**2/2 = 0
x → ∞

If we could truncate the series at some finite value of n, say v,
then ψ would be finite at ∞ and would be quadratically
integrable.  Since for both even & odd n,



cn+2 = {[ α + 2αn - 2mE/ h2]/(n+1)(n+2)} cn,

then cv+2, cv+4, etc. = 0 if

α + 2αn - 2mE/ h2 = 0 for v = n

This truncation condition leads to a quantum condition on the
energy:

E = (h2/2m) α (1 + 2v), α = 2πνm/ h

Or E = h πν (1 +2v) = h ν (1/2 + v), v = 0, 1, 2,...

So by requiring that ψ be finite as x → ∞, E becomes quantized.

The general recursion relation can be written by substituting

E = (h2/2m) α (1 + 2v)

into

cn+2 = {[ α + 2αn - 2mE/ h2]/(n+1)(n+2)} cn,

or cn+2 = [2α (n - v)/(n + 1)(n + 2)] cn

So, which series is truncated by quantizing the energy depends
on whether v is even or odd.  The only way to have the general
solution be well-behaved is to set the coefficient of the other
series = 0.

     ∞       ∞

So ψ = e-αx**2/2 Σ c2j+1 x
2j+1 or e-αx**2/2 Σ c2j x

2j

     j=0     j=0

Note that the energy levels of the harmonic oscillator are
equally spaced:



E = h ν (1/2 + v)

∆E = Ev+1 - Ev = h ν (v + 3/2 - v - 1/2) = h ν

For v = 0, E = h ν/2 ground state energy

E is non-zero because E = 0 would violate the Uncertainty
Principle (both position & momentum would be known exactly).

If E = 0, then T = 0 & V = 0.

T = 0 means ∆px = 0 (i.e. the momentum is exactly 0)

V = 0 means the particle is at exactly 0

Harmonic Oscillator Wavefunctions

v = 0 The power series is even; c2 = c4 = ... = 0

ψ0 = c0 e
-αx**2/2 E0 = (1/2) hν

Find c0 by normalizing ψ0:   ∫ -∞∞ c0
2 e-αx**2  dx = 1

e-αx**2  is an even function of x since replacing x by -x 
gives the same result.

∫ -∞∞ even(x) dx = 2 ∫ 0∞ even(x) dx

∫ 0∞ e-αx**2   dx = (1/2) √(π/α)   (See Appendix for 
integrals)

So 2 c0
2 (1/2) √(π/α) = 1 → c0 = (α/π)1/4

See Fig. 4.3 for the plot of ψv, v = 0, 1, 2, 3



ψ0  is an even function, ψ0 (x) = ψ0 (-x).  From the plot
it can be seen that ψ0 = 0 only at x = +∞ so there are no 
nodes in ψ0

v=1 The power series is; c3 = c5 =...= 0

ψ1 = c1x e-αx**2/2 E1 = (3/2) hν

Find c1 by normalizing ψ1:   ∫ -∞∞ c1
2 x2e-αx**2  dx = 1

= 2 ∫ 0∞ c1
2 x2e-αx**2  dx = 2 c1

2 (1/4) (π/α3)(1/2)

c1= (4α3/π)1/4

ψ1 is odd: ψ1(-x) = - ψ1(x); but ψ 1 2 is even; one node--
at x = 0

v=2 The power series is; c4 = c6 =...= 0



ψ2 = (c0 + c2x
2) e-αx**2/2

Need a recursion relation for c0 & c2 for v = 2.  Set n = 0 to
ontain

c2 = [2α(0 - 2)/(0 + 1) (0 + 2)] c0

ψ2 = c0 (1 - 2α  x
2) e-αx**2/2

Find c0 by normalizing ψ2:   ∫ -∞∞ c0
2 (1-2αx2)2 e-αx**2  dx = 1

c0 = (α/(4π)1/4

Note: the number of nodes in the wavefunction,interior to the
boundary points at +∞, is equal to v.  

Note:  By squaring the wavefunction it can be seen that there is
a non-zero probability of finding the particle anywhere except at
the nodes.

Tunneling:  As in the particle in a box case, the pariicle can be
found outside the classically-allowed region for which E>V.  See
Fig. 4.4 (i.e. the classically allowed region is that which is inside
the parabola defined by V = (1/2) kx2.  This indicates quantum
mechanical behavior.

To measure that a particle is in the classically forbidden
region, one must measure its position.  But the act of
measurement changes the position, by imparting energy to the
system.  So an accurate measurement of the position leads to a
large uncertainly in the momentum (as well as the kinetic
energy)



The Harmonic Oscillator as a Model for the Vibrational
Spectra of Diatomic Molecules

How is the wavefunction for the harmonic oscillator related
to that of a diatomic molecule?

Consider the line spectrum of H2.  At low resolution one
sees a series of thick lines (or bands) that correspond to
transitions between electronic energy states.  As with the
Balmer, Paschen, etc. series for H, the lines have a certain
frequency which corresponds to the energy difference between
different electronic energy states.  At higher resolution, the bands
are seen to be made up of several individual lines.  The lines are
due to the fact that the nuclei aren’t infinitely heavy (in fact,
nuclear motion is quantized like that of the electron).  

Spectral transitions take place between particular vibrational
& rotational levels of an excited electronic state & vibrational &
rotational levels of the ground state. So a single electronic
transition (which shows up as a band at low resolution) can have
many different types of transsitions between vibrational &
rotational levels.  These transitions show up as fine structure at
high resolution.  The simplest spectra to interpret are vibrational-
rotational transitions within the same electronic energy level.

Sketch out how to solve for the molecular wavefunction:

Use the Born-Oppenheimer Approximation.  Assume that
the nuclei are fixed at distance R. This assumes that

ψ = ψelect ψnucl

and results in separate eqs. for the electronic & nuclear motions.
Solve the Schrödinger Eq. for the electronic energy, E(R).  For
the vibrational part of the Schrödinger Eq.,



-(h2/2µ) d2χ(R)/dR2 + E(R) χ(R) = Evib χ(R)

where
µ = reduced mass of diatomic molecule = m1m2/(m1 + m2)

R = internuclear separation

E(R) = electronic energy, calculated at various R to give 
curve

Evib = vibrational energy

χ = vibrational wavefunction

By approximating the form of E(R), one gets an eq. for the
vibrational wavefunction similar to that for the harmonic
oscillator.  Expand E(R) in a Taylor Series around R = Re =
equilibrium internuclear separation:

E(R) = E(Re) + (dE/dR) Re  (R - R e)

+ (1/2)(d2E/dR2) Re  (R - R e)
 2 + ...

Since the zero of energy falls at R = R e, E(Re) = 0.  Also
(dE/dR)  Re = 0 (i.e. minimum point) at R = R e So

E(R) =  (1/2)(d2E/dR2)  Re  (R - R e)
 2 + ...

Let ρ = R - Re and k = (d2E/dR2)  Re = force constant.

Then E(ρ) = (1/2) k ρ2 + ...

The first term in the expansion is a parabola with the same
minimum & curvature at the minimum as the exact curve E(R).



If this form is used in the Schrödinger Eq. for vibrational motion
of the nuclei, the resulting eq. is that of the harmonic oscillator
(changing variables from R to ρ:

-(h2/2µ) d2χ(ρ)/dR2 + (1/2) k ρ2  χ(ρ) = Evib χ(ρ)

Therefore, the harmonic oscillator is a good approximation for a
diatomic molecule when R ≈ Re. So

Evib = Ev = (v + 1/2) hυ, v = 0, 1, 2,...

υ = (1/2π) (k/µ)1/2

Selection Rules for Transitions Between Vibrational Levels
are determined from the time-dependent Schrödinger Eq. (This
will be covered in a much later chapter.)

Only if the dipole moment ε(ρ) varies with internuclear 
separation ρ, as in a heteronuclear diatomic like HCl, is 
the transition moment non-zero &

∆ v = +1

For homonuclear diatomics like H2, ε is independent of ρ, 
so no vibrational transition is allowed.

Derive the Selection Rules:

One can calculate the expectation value of ε using 
harmonic oscillator wavefunctions:

<ε> = ∫ ψv
* ε(ρ) ψ v’ dτ



If ∆ v = +1, then <ε> is not equal to zero and the   
transition is allowed.  Calculate the wavenumber of the 
transition:

If ∆ v = +1, then v” = v’ + 1

∆E = hc/λ = hc ν, ν  = 1/λ

For absorption: v” = v’ + 1

ν = ∆E /hc = (1/(hc)){(v”+1/2)hν - (v'+1/2) hν}

= (ν/c) (v” - v’) = ν/c

For emission: v” = v’ - 1 & ν = ν/c

An infra red spectrum of a molecule is like a fingerprint.  It is
particularly important for polyatomic molecules whose spectrum
is very complex.  Bond stretching & angle bending vibrations are
independent of the molecule.  So one can determine the
molecular structure from the spectra.  At high resolution, each of
the vibrational peaks will be made up of many other peaks
corresponding to rotational transitions (rotational fine structure)

If a molecule were really a harmonic oscillator, it would have
only one vibrational transition frequency (calculated above).  Its
spectrum would be made up of just one line.  However, the
spectrum is made up of many lines due to the fact that the actual
potential function has many anharmonic terms.  

E(R) = (1/2) k  (R - R e)
 2 + (1/3!)(d3E/dR3)  Re  (R - R e)

 3

+ (1/4!)(d4E/dR4)  Re  (R - R e)
 4 + ...



These terms cause small non-zero transition moments for ∆v =
+2, + 3,...Transitions are less intense in these overtones.

Relative Population

Ni = number of molecules in i-th energy level
gi = degeneracy of the i-th level
T = temperature
B = Boltzman constant

Ni / Nj = (gi / gj) e
-(Ei - Ej)/kT

At room temperature,

light diatomics (H2, HCl, CO) - only v = 0 is 
significantly populated

heavy diatomics (I2) have several levels populated


