
MODEL SYSTEM: PARTICLE IN A BOX

Important because:

It illustrates quantum mechanical principals

It illustrates the use of differential eqns. & boundary
conditions to solve for ψ

It shows how discrete energy levels arise when a small
particle is confined to a region of space

It can predict the absorption spectrum of some linear
conjugated molecules by treating the π electrons as free particles
in a 1-dimensional box with infinite walls

Ordinary Differential Eq.:

Involves only 1 independent variable

x - independent variable
y(x) - dependent variable

y’(x) = dy/dx, y”(x) = d2y/dx2, ... y(n)(x) = dny/dxn

A differential eqn. expresses a functional relationship between x
& the derivatives of y with respect to x:

f(x, y’(x), y”(x), ... y(n)(x)) = 0

The order of the eq. is the order of the highest derivative of y
with respect to x.

An n-th order differential eq. has n independent solutions (i.e.
solutions that are not multiples of each other)



Examples: y(4) + (y’)2 + sin x cos y = 3 ex, order = 4

x (y’)  2 + sin x cos y = 3 ex, order = 1

Linear Differential Eq.:

An(x) y(n) + An-1(x) y(n-1) + ... + A0(x) y = g(x)

g(x) = 0: homogeneous
g(x) not =0: inhomogeneous

Example: Schrödinger Eq.

d2ψ(x)/dx2 + (2m/h2) (E - V(x)) ψ(x) = 0

is a 2nd order homogeneous linear differential eq. with

A0(x) = (2m/h2) (E - V(x))

A1(x) = 0

A2(x) = 1

To solve a 2nd order homogeneous linear differential eq.,

A2(x) y” + A1(x) y’ + A0(x) y = 0,

divide by A2(x) to give:

y” + P(x) y’ + Q(x) y = 0, (1)

where P(x) = A1(x)/A2(x) and Q(x) = A0(x)/A2(x).



If there are two independent solutions y1 and y2 (where y1 is not
a constant x y2) such that

y1” + P(x) y1’ + Q(x) y1 = 0
and

y2” + P(x) y2’ + Q(x) y2 = 0,

then the general solution is

y = c1 y1 + c2 y2

(Prove this yourself by plugging the general solution into Eq.
(1).)

In order to solve for c1 & c2, must have two eqs. for y.  Get
the 2nd Eq. by using boundary conditions &/or normalization
conditions.  This will be illustrated by the Particle in a Box.

But first, consider a special case--a 2nd order linear differential
eq. with constant coefficients:

P(x) = p, Q(x) = q, p& q are constants

Then, 
y” + p y’ + q y = 0

and the solution must be a function which has the same
functional form for the 1st & 2nd derivatives as the function
itself, i.e.

y = esx.
Then y’ = s esx = s y

and y” = s2 esx = s2 y

So that s2 esx + ps esx + q esx = 0



and the auxiliary eq. is

s2 + ps  + q = 0      

or      s = -p/2 + (1/2) √(p2 - 4q) = s1, s2

and y = c1 e
s1x + c2 e

s2x

Now we will use this knowledge of 2nd order linear differential
eqs. to solve the Schrödinger Eq. for a model problem--

The Particle in a 1-DimensionalBox

The particle is constrained to move on the x-axis & is subject to
an infinite potential outside the box & a zero potential inside.
The box stretches from x = 0 to x = L (see Fig. 2.1)

Must solve the Schrödinger Eq.

d2ψ(x)/dx2 + (2m/h2) (E - V(x)) ψ(x) = 0

in three regions:

I & III: V= ∞, (E-V) blows up, so ψ(x) must be taken as 0.



II: V = 0, d2ψ(x)/dx2 + (2m/h2) E ψ(x) = 0

This is a 2nd order homogeneous linear differential eq. with
constant coefficients: p = 0, q = (2m/h2)E

So the auxiliary eq. is: s2 + q = 0,

or s = + √(-q) = + √-(2m/h2)E

E = kinetic energy + potential energy

kinetic energy is always > 0

here, potenial energy = V(x) = 0

so E > 0 and s = + i√(2m/h2)E =  s1, s2

So ψII  = c1 e
s1x + c2 e

s2x = c1 e
iθ + c2 e

-iθ

where θ = x √(2mE/h2)

ψII  = c1(cos θ + isin θ) + c2(cos θ - isin θ)

= (c1 + c2) cos θ +  i(c1 - c2) sin θ

= A cos θ +  B sin θ, where A = (c1 + c2) & B = i(c1 - c2)

Solve for A & B by applying the Boundary Condition: ψ must
be continuous at the boundaries of the different regions:

Define A from the boundary condition at x = 0:

lim   ψI  = lim   ψII

x→0    x→0



0 = lim    (A cos θ +  B sin θ)
x→0

As x→0, θ→0, cos θ→1, & sin θ→0

To make A cos θ = 0 at x = 0, must choose A = 0.

Then ψII  = B sin θ

Define B from the boundary condition at x = L:

lim   ψII  = lim   ψIII

x→L    x→L

B sin θ = 0

B can’t be zero because then ψ would be zero everywhere 
& the box would be empty. So must have

sin θ = 0, or θ = 0, +π, +2π, +3π,...

At x=L, θ = L √(2mE/h2) = +nπ, n = 0, 1, 2, ...

This leads to a quantum condition on the energy:

E = n2π2h2/(L22m) = n2h2 /(L28m), n = 1,2,3, ...

Then  ψII  = B sin θ = B sin [x √(2mE/h2)]

 = B sin (+ nπx/L)

Since sin x = sin (-x), +nπx/L gives the same solution as
 -nπx/L.  So



ψII  = B sin (nπx/L)

Determine B from the Normalization Condition:

∫−∞
∞ ψ 2 dx = 1

= ∫−∞ 0ψ I 2 dx + ∫0 
Lψ II 2 dx + ∫L 

∞ψ III  2 dx

=  ∫0 
Lψ II 2 dx

=  B 2∫0 Lsin2(nπx/L) dx

=  B 2∫0 L[1/2 - 1/2 cos (2nπx/L)] dx

=  B 2 [L/2 - 0]

B = √(2/L)

ψII  = √(2/L)  sin (nπx/L), n = 1, 2, 3, ...

where n is called the quantum number.  A node is a point at
which the wavefunction equals zero.  For each increment in n,
the number of nodes inceases by 1 (see Fig. 2.3) so that there
are (n+1) nodes.



Note that at n=2, there is zero probability for the particle to be in
the center of the box.  But how does it get from one side to
another?  The situation is different than that of a classical
particle.  A classical particle of constant energy would have an
equal probability of being found anywhere in the box since
constant energy means constant speed.  A quantum mechanical
particle of constant energy would have a maximum probability
of being found in the center for n=1.  But as n increases, the
number of maxima & number of nodes increase and the
quantum mechanical behavior approaches the classical limit, i.e.
the particle would have equal probability of being found
anywhere in the box.  This is an example of the Bohr
Correspondence Principle: In the limit of large quantum
number, quantum mechanics approaches classical mechanics.

Variations on a Particle in a 1-Dimensional Box:

What happens if the walls are removed?
Free Particle in 1-Dimension

“Free” means not subject to any force, so V is a constant
(independent of x).  Arbirarily set V = 0.  Then region II is
spread out over the whole x-axis; no regions I & III.

d2ψ(x)/dx2 + (2m/h2) E ψ(x) = 0

ψ = c1 e
iAx + c2 e

-iAx, where A = (1/h)√ (2mE)

But how can one solve for the constants in ψ?  Previously they
were determined by the boundary conditions between regions.

Since ψ 2  is the probability density, ψ must be finite as
x→∞.  



For E>0, ψ = c1 e
iAx + c2 e

-iAx

As x→∞, eiAx & e-iAx oscillate as sin (Ax) &
cos (Ax), so ψ is finite

For E<0, ψ = c1 e
iAx + c2 e

-iAx

Let A’ = (1/h)√ (2m E )

Then eiAx = e-iA’x , which →0 as x→∞.

And e -iAx = eA’x , which →∞ as x→∞.

So ψ →∞ as x→∞.

So, in order to have a well-behaved wavefunction, one must
choose E>0.  There is no quantum condition on the energy.  It
can take on a continuous range of values.

But note, for E>0, ψ can’t be normalized because

∫−∞
∞ ψ 2 dx is not finite.

A free particle is an unphysical situation because there is no
partcle in the physical world that is not acted on by any forces.

What happens if finite walls are used?
Particle in a 1-Dimensional Well (See Fig. 2.5a)



V(x) = V0  for x < 0
= 0 0 <  x < L
= V0  for x > L

Case 1: E < V0

In Regions I & III, have

d2ψ(x)/dx2 + (2m/h2) (E - V0) ψ(x) = 0

This has the form of a homogeneous linear 2nd order differential
eq. with constant coefficients

p = 0, q = (2m/h2) (E - V0)

Setting ψ = esx leads to the auxiliary eq.

s2 + ps + q = 0 = s2 + q

Or s = + √(-q) = + √(2m/h2) (V0 - E)

Therefore, the general form of ψ for Regions I & III is

ψI,III  = c1 e
s1x + c2 e

s2x

with s1 = + √(-q) = √(2m/h2) (V0 - E)

and s2 = - √(-q) = √(2m/h2) (E - V0)



In Region II, have the same form of the solution as in the case
with infinite walls:

ψII  = c1 e
ix√q’ + c2 e

-ix√q’

But c1  & c2 will be different for the regions I, II, & III.  They are
determined, as before, by choosing them so that the
wavefunction is well-behaved as x→+∞ (For Regions I & III),
by matching the solutions at the boundaries, and by
normalization.  Since the wavefunction is not zero in Regions I
& III, this is more difficult to solve mathematically.  Matching
Regions I & II results in the relationship

tan √(2mE/h2) = 2/(2E - V0)√( V0 - E)E

By graphing the left & right sides of the eq., it can be seen that
only for certain values of E will the two sides be equal. This
means that the energy of the system is quantized.  The points of
intersection are the quantized energy values.

It is possible to show that there are n energy levels with E < V0
such that

n-1 < (L/h)√(8mV0) < n

Choose a sample value of V0: V0 = h2/(mL2)

Then (L/h) √(8mV0) = √8 = 2.83 < n, so n = 3

The values of n determine the number of bound states of the
system. See Fig. 2.5 b & c for a plot of the ground & first
excited states of the system.  (What would a plot of ψ 2 look
like?) The wavefunction oscillates inside the box & drops off
asymptotically outside the box. The number of nodes increases



by one for each higher level.  States with  E < V0 are called
bound states.

Case 2: E > V0

This means that √(V0 - E) is imaginary and that ψI & ψIII
oscillate.  E is not restricted to take on certain values, so all
energies > V0 are allowed.  These are called unbound states.

Tunneling

Since ψ 2 is not equal to 0 in Regions I & III outside the
box, there is a finite probability of finding the particle there even
though E, the total energy is < V0, the potential energy.

This is called the classically forbidden region because in
classical mechanics

E = T + V & T > 0 so E is never < V.

Tunneling occurs when a particle passes through a classically
forbidden region.  The particle can pass through a barrier even if
it doesn’t have enugh energy to go over the barrier.  Tunneling



occurs for particles of small mass, such as the electron or H
atom.

Examples:

Emission of α particles from a radioactive nucleus.  The α
particles “tunnel through” the potential energy barrier of
attractive nuclear & Coulombic forces.

Ammonia inversion. The barrier to inversion (from one
“umbrella” shaped conformation to another) of NH3 is due to
the high energy conformation in which all four atoms are planar.
H atoms tunnel through this barrier.


