Chapter 2 Problems 13,16, 24, 26

13. a

b. Yes, constraint 2.

The solution remains $x 1=2, x 2=2$ if constraint 2 is removed 16. a

b. Similar to part (a): the same feasible region with a different objective function.

The optimal solution occurs at $(708,0)$ with a profit of $z=20(708)+9(0)=$ 14,160.
c. The Sewing constraint is redundant. Such a change would not change the optimal solution on the original problem.
24. a

Let $\mathrm{x} 1=$ amount spent on newspaper advertising
$\mathrm{x} 2=$ amount spent on radio advertising
Max $50 \mathrm{x} 1+80 \mathrm{x} 2$
S.t.

$\mathrm{x} 1+$	x 2	$=$	1000	
x 1			Budget	
	x 2	\geq	250	
		Newspaper minimum		
$\mathrm{x} 1-$	2 x 2	\geq	0	
$\mathrm{x} 1, \mathrm{x} 2 \geq 0$				Radio minimum

b.

26. a

$$
\begin{array}{ll}
\text { Let } \quad \begin{array}{l}
\text { x1 }=\text { number of jars of Western Foods Salsa produced } \\
\\
\end{array} 2=\text { number of jars of Mexico City Salsa produced }
\end{array}
$$

Max $1 \mathrm{x} 1+1.25 \mathrm{x} 2$
S. t.

$5 \times 1+$	$7 \times 2 \leq$	4480	Whole tomatoes
$3 \times 1+$	1×2	\leq	2080
Tomato sauce			
$2 \times 1+$	2×2	1600	Tomato paste

Note: units of constraints are ounces
b. Optimal solution: $\mathrm{x} 1=560, \mathrm{x} 2=240$

Value of optimal solution is 860

