Computer Problem \#2 and Extra Credit Computer Problem

Computer Problem \#2

Consider the system

$$
\begin{align*}
& x^{\prime}=-x-8 \pi y \\
& y^{\prime}=2 \pi x-y \tag{1}
\end{align*}
$$

subject to the initial conditions

$$
\begin{equation*}
x(0)=2, \quad y(0)=0 . \tag{2}
\end{equation*}
$$

(a) Use the improved Euler method to compute approximate solutions to (1)-(2) for the step sizes $h=0.1,0.05,0.01$ and 0.005 .
(b) Graph the error as a function of t for each of the step sizes in (a).
(c) Compare the approximate solutions obtained with the exact solution of (1)-(2).

Extra Credit Computer Problem

(i) Repeat (a) and (b) above using the Runge-Kutta method just for step sizes $h=0.2,0.1$ and 0.05 .
(ii) Plot the exact trajectory of (1)-(2) in the x, y - phase plane and compare this with plots of the approximate trajectories obtained in (i) for the cases $h=0.2$ and $h=0.1$.

