ME 343 Mechanical Laboratory I

Dr. Chao Zhu MEC 304

Tel: (973) 596-7624 Email: zhu@njit.edu

Textbook: J. P. Holman, Experimental Methods for Engineers, 7th Edition, McGraw Hill, 2001

References: Beckwith, Marangoni, and Lienhard, Mechanical Measurements, 5th Edition, Addison Wesley, 1993

R. J. Goldstein, Fluid Mechanics Measurements, Hemisphere Pub., 1983 D. Beer, <u>A Guide to Writing as an Engineer</u>, 2nd Ed., Wiley ISBN 0-471-43074--9

Course Content

Topic	Reading Assignment	Key concepts	
Introduction;	15.4; 2.7, 3.3,3.4, 3.6, 3.8,	Lab report writing; linear aggression; Uncertainty	
Data analysis	3.9, 3.11-3.14, Notes 1-3	analysis	
Speed Measurements and	4.12, 4.15	Filtration theory; Oscilloscope applications	
Signal Filtration	Notes 4-5		
Temperature measurements	8.5,8.6, 8.8, 8.9, 2.7	Thermocouple; thermo-resistance; pyrometers	
	Notes 6-7		
Force and Torque	10.3-10.8	Strain-stress relationship; strain gage; Wheatstone	
Measurements (Strain gage)	Notes 8-9	bridge	
Control (PLC & PID)	Note 12; supplements	PLC, Ladder logic diagram; PID	
Flowrate & Velocity	7.3, 7.4, 7.6, 7.13	Bernoulli equation; Venturi meter; Pitot tube; Laser	
Measurements	Note 10; supplements	Doppler Velocimetry; Flow visualization	
Acoustics	11.5; Note 11	Sound pressure level (dB); attenuation	

Course Arrangement

Week	Lecture (Tuesdays: 1:00 p.m2:25 p.m.)		Lab (Tue: 2:30 p.m. – 4:40 p.m.)	
	Topic	Homework	Topic	Report Due
1	Introduction: Chap 15, Chap 3	-	-	-
2	Data analysis Chap 3, Chap 4	HW#1	Dotation and 6	-
3	Sample analysis of Rot. Sp. & Fil.	-	Rotation speed & signal filtration	HW#1
4	Thermometry: Chap 8, Chap 2	HW#2	Temperature	Rot. Sp. & Fil.
5	Sample analysis of Temperature	-		HW#2
6	Strain gage: Chap 10	-	Strain 1; Mid-term	Temperature
7	Strain gage (continue)	HW#3	Strain 2	-
8	Sample analysis of Strain Gage	-	Strain 2	HW#3
9	Control Theory (PLC; PID)	HW#4	PLC Control	Strain gage
10	Sample analysis			HW#4
11	Pressure and flow: Chap 7	HW#5	Flow	Control
12	Sample analysis of Flow	-		HW#5
13	Acoustics: Chap 11	-	Acoustics	Flow
14	Review	-	-	Acoustics (abstract)
		Final Exan	n	<u> </u>

Grade Calculations

50% Lab Report (5) and Class Attendance (14)

- Lab attendance is a must for each lab experiment! More than 1-hour delay is considered as absence. Makeup may be allowed, with TA's supervision (\$20/hour for TA's supervision as personal tutorship).
- Class attendance is required (20% of Lab grade). More than 30-min delay will be considered as absence.

20% Homework (5) and Lab Abstract (1)

15% Mid-term Examination (1)

15% Final Examination (1)

Final Grade is based on the total grade.

In general, above 90% guarantees a "A" grade and below 60% will result in a "F" grade.

The NJIT Honor Code and Professional Conduct will be strictly enforced.

Fall 2006