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Wireless Link Properties

• Wireless link states randomly vary with time 
and space.
– Bursty errors (e.g., fading channels).
– Random errors.

• Effect of link errors.
– Bit flips.
– Bit deletion and bit insertion
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Overview of Encryption Schemes

• Block cipher.
– Fixed blocks of plaintext encrypted to same 

blocks of ciphertext using an encryption key.
• Stream cipher.

– Block size equal to one bit.
• Symmetric key encryption.

– Same key for encryption and decryption.
• Public key encryption.

– Encryption and decryption keys are different.
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Avalanche Criterion
• Block ciphers satisfy avalanche criterion.

– One input bit change causes (on an average) one 
half of output bits to be in error.

– Removes statistical correlation between input 
and output bits.

– Cryptanalysis is made harder (security 
increases).

• One bit error in received ciphertext block 
due to wireless link state implies:
– Multiple bit errors in decrypted plaintext block 

(throughput decreases).

Trade-off in security vs. wireless throughput
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Popular Symmetric Block Cipher 
Modes

• Electronic codebook mode (ECB).
– Every plaintext block is encrypted 

independently: 
– One bit error in ciphertext block causes error 

propagation in decrypted plaintext block.
– No loss of synchronization if integer multiples 

of blocks are lost.
• Explicit re-synchronization is needed otherwise.

– Identical plaintext is mapped to identical 
ciphertext
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• Cipher block chaining (CBC).
– Before encryption plaintext block is XORed with 

previous ciphertext block:

– An erroneous ciphertext block results in two 
plaintext blocks in error.

– If an integer number of blocks are in error then one 
additional plaintext block is in error before re-
synchronization.

• Explicit re-sync is needed otherwise.
• Identical plaintext is encrypted to non-

identical ciphertext.
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• Cipher feedback mode (CFB).
– Operates on blocks of size j<b (plaintext block size).
– Plaintext is XORed with output of an encryption 

algorithm.
– Feedback to encryption algo. are previous ciphertexts.
– An erroneous ciphertext block distorts corresponding 

decrypted plaintext block and following ceil{b/j} blocks.
– If number of lost bits is an integer multiple of j then 

ceil{b/j}  additional plaintext block are distorted 
before re-synchronization.

• Explicit re-sync is needed otherwise.
• Encryption is performed more often.

– Hardware throughput is low.
– Higher power consumption—not desirable for low power 

mobile devices.
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• Output feedback mode (OFB).
– Operates on blocks of size j<b (plaintext block size).
– Plaintext is XORed with output of an encryption 

algorithm.
– Feedback to encryption algo. are previous outputs.
– One bit error in ciphertext causes single bit error in 

decrypted plaintext; no error propagation.
– If some bits are lost explicit re-synchronization 

needed.
• Encryption is performed more often.

– Hardware throughput is low.
– Higher power consumption—not desirable for low power 

mobile devices.
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Trade-offs…

• High (hardware) throughput/low power 
consumption modes (ECB,CBC)
– Bit error propagation after decryption.
– Reduce network throughput.

• Low (hardware) throughput/high power 
consumption modes (1-CFB,OFB)
– No bit error propagation.
– Higher network throughput.

No single encryption mode is the clear winner.

10

Error Propagation vs. Encryption Block 
Length• : wireless link bit error rate

• : post decryption bit error rate
• N : encryption block length

bP
,b postP

, 2b post b
NP P≈



6

11

Throughput vs. Security Trade-off
• Throughput, D=R(1-NPb)bits/sec; 
• R: Transmission rate.
• Security level against brute force attack is ~ 2N

Pb=10-2,

BPSK modulation,
Rayleigh distributed, 
flat fading channel.
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Approaches to Error Control
• Forward error control (FEC) code.

– FEC may fail due to error propagation effect.
• Reduce diffusion in encryption.

– Reduced error propagation.
– Reduced security.

• Interleaving.
– Causes delay depending on interleaving depth.

• ARQ protocols.
– Overhead, high delay bandwidth product…

• Opportunistic encryption.
– Optimize encryption block size based on security and wireless link 

state conditions.
– Optimally trade-off security for throughput.
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Scenarios

• Case 1: Exact wireless channel signal to 
noise ratio (SNR) known.

• Case 2: Only current average SNR and 
probability distribution of randomly time-
varying SNR also known.

• Case 3: A Markov channel model is known 
for channel/link states.
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Security and Adversary Models

• QN: Set of available encryption block 
lengths

( ) ( )
( )

2
max 2

max

1

log , log max

Aver 1:ag  e Security

i N

i
i i iN Q

n

i i
i

NS N S N
S

S S N
n

∈

=

= =

= ∑

( ) ( )

( )
1

Pr where  is the "attacker success p

Average vulnerabili

rob."

1:ty  Pr

i i i

n

i
i

N N

N
n

α α

α
=

Φ = ≥

Φ = ≥∑



8

15

Case 1: Exact Channel SNR Known (I)

• Channel SNR at ith time slot: iγ
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Goodput Gain
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Case 1: Exact Channel SNR Known (II)
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Throughput Gain
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• Uniform distribution:

• Throughput maximization subject to 
vulnerability constraint.
– Re-formulate as fractional knapsack problem.

• Outline of optimal solution:
– Sort the channel SNR’s in decreasing order.
– Allocate minimum block lengths so that

is achieved.  
– Allocate block lengths to the ordered channels 

corresponding to  
– Stop when it cannot be done anymore.
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Case 2: Average Channel SNR Known
• Define cost function:
• Rijndael cipher; N={128,160,192,224,246}
• Average SNR = 7dB. 
• Min. sec.=0.875 (~128bit key)

( , ) (1 ) ( , ) ( )C N D N S Nγ λ γ λ= − +
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Fixed block encryption -- 128 bit AES 
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Case 3: Finite State Markov Channel 
Model

• Channel SNR is quantized to finite set of 
states.

• Channel jumps from one state to another 
as a Markov process.

• Each state corresponds to a range of bit 
error rates.

• State transition probabilities are functions 
of various physical layer parameters.
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A Markov Decision Process (MDP) 
Model (I)

• Define state of the MDP as:
• r-number of channel states.
• q-capacity of receiver buffer.
• Assume ACK/NAK sent to transmitter.
• Qn : set of available encryption block 

lengths (action set). |Qn|=k.
• Buffer occupancy: 

where ma blocks of lengths Na were 
successfully transmitted. 
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A Markov Decision Process (MDP) 
Model (II)

• MDP state transition probability:

• Reward function of MDP:

• Bellman’s equation (dynamic program):
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Throughput Gain
• Na={128,160,192,224,256}
• r =8 (no. of channel states)
• T=1000;
• Fixed encryption uses 224 bit block

0.5α =
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Conclusions
• Link state adaptive encryption 

(opportunistic encryption) results in 
significant throughput increase for a wide 
range of channel SNR.

• Opportunistic encryption performs well 
with varying degrees of side information 
about the channel conditions.

• Provides a framework to model security vs. 
throughput trade-off.


