
ECET 310-001
Chapter 4

W. Barnes, 9/2006, rev’d. 11/07
Ref. Huang, Han-Way, The HCS12/9S12: An Introduction to
Software and Hardware Interfacing, Thomson/Delmar.

2

In This Set of Slides:

• Data Structures (Stack, Arrays, Strings)
• Search of Sorted and Unsorted arrays
• Strings
• Subroutines

– Usage Rules
– Stack
– Leas
– Stack Frame

• Bubble Sort Example
• D-Bug12 I/O Functions

– Printf function

3

Program = data structures + algorithm

Three Data structures to be discussed
1. Stack: a last-in-first-out data structure
2. Array: a set of elements of the same type
3. String: a sequence of characters terminated by a special character

• Stack:

top element

bottom element

low address

high address

Stack pointer

Figure 4.1 Diagram of the HCS12 stack

4

Stack cont’d, Push and Pull Instructions

• The stack grows down in memory
• pushes pre-decrement while pulls post-increment.
• Note the equivalent instructions, which help explain what’s happening
• CCR push and pull have no equivalent instructions, so CCR can only

be accessed via the stack
T able 4 .1 H C S12 push and pull instructions and their
 equivalent load and store instructions

M nem onic

psha
pshb
pshc
pshd
pshx
pshy
pula
pulb
pulc
puld
pulx
puly

Function

push A into the stack
push B into the stack
push C C R into the stack
push D into stack
push X into the stack
push Y into the stack
pull A from the stack
pull B from the stack
pull C C R from the stack
pull D from the stack
pull X from the stack
pull Y from the stack

Equivalent instruction

staa 1 , -SP
stab 1 , -SP
none
std 2 , -SP
stx 2 , -SP
sty 2 , -SP
ldaa 1 , SP +
ldab 1 , SP +
none
ldd 2 , SP +
ldx 2 , SP +
ldy 2 , SP +

5

Indexable Data Structures

• Vectors (one dimension) and matrices (multi-
dimensioned) are indexable data structures.

• First element of a vector is associated with the
index 0 to facilitate the address calculation.

• Directives db, dc.b, fcb define arrays of 8-bit
elements.

• Directives dw, dc.w, and fdb define arrays of
16-bit elements.

6

Example 4.2
Write a program to find out if the array vec_x contains a value, key.
The array has 16-bit elements and is not sorted.

Start

i = 0
result = -1

vec_x[i] = key?

i = N - 1?

i = i + 1 result = address of vec_x[i]

Stop

Figure 4.3 Flowchart for sequential search

yes

yes

no

no

7

Code for Search of an Unsorted Array
; looks for 16-bit key and if found stores the address at result, otherwise –1 is stored at result
; this program contains a true do until C loop
N equ 15 ; array count
notfound equ -1
key equ 190 ; define the searching key

org $1500
result rmw 1 ; reserve a word for result

org $2000
ldy #N ; set up loop count
ldd #notfound
std result ; initialize the search result with default of notfound, -1 or $FFFF
ldd #key
ldx #vec_x ; place the starting address of vec_x in X

loop cpd 2,X+ ; compare the key with array element & update pointer
beq found
dbne Y,loop ; have we gone through the whole array?
bra done ; only get to here if key is not found

found dex ; need to restore the value of X to point to the
dex ; matched element
stx result

done swi
vec_x dw 13,15,320,980,42,86,130,319,430,4, 90,20,18,55,30

end

Q. What will be the value in result after above has executed?

8

Binary Search of a Sorted Array

(Takes advantage of the fact array is sorted to increase
efficiency/decrease execution time)

Algorithm: Compare key with middle element, if equal then done, if
key>middle element then continue search in upper half of
array, if key<middle element then continue search n lower half
of array

For following: max,min,mean are pointers, not actual data
• Step 1: Initialize variables max and min to n -1 and 0, respectively.

• Step 2: If max < min, then stop since no element matches the key.

• Step 3: Let mean = (max + min)/2

• Step 4: If key = arr[mean], then key is found in the array, exit.

• Step 5: If key < arr[mean], then set max to mean - 1 and go to step 2.

• Step 6: If key > arr[mean], then set min to mean + 1 and go to step 2.

9

Example 4.3 Write a program to implement the binary search algorithm for a
sorted array and also a sequence of instructions to test it.

(longer program than last but more efficient if you have a sorted array)

n equ 15 ; array count
key equ 83 ; key to be searched

org $1500
max rmb 1 ; maximum index value for comparison
min rmb 1 ; minimum index value for comparison
mean rmb 1 ; the average of max and min
result rmb 1 ; search result

org $2000
clra
staa min ; initialize min to 0 (i.e., point to first number in array)
staa result ; initialize result to 0
ldaa #n-1
staa max ; initialize max to n-1 (i.e., point to last number in array)
ldx #arr ; use X as the pointer to the array

loop ldab min
cmpb max
lbhi notfound ;Long Branch to notfound if min > max
addb max ; compute mean
lsrb ; “ (max + min)/2

;Continued on next slide

10

Binary Search continued

stab mean ; save mean
ldaa b,x ; A element arr[mean] uses B, mean, as offset
cmpa #key
beq found
bhi search_lo
ldaa mean
inca
staa min ; place mean+1 in min to continue
bra loop

search_lo ldaa mean
deca
staa max
bra loop

found ldaa #1
staa result

notfound swi
arr db 1,3,6,9,11

db 61,63,64,65,67
db 80,83,85,88,90
end

11

Strings

• String def.: A sequence of characters terminated by a NULL (ASCII code 0)
or other special character such as EOT (ASCII code 4).

• To be understood, a binary number must be converted to ASCII

• Conversion method: divide the binary number by 10 repeatedly until the
quotient is zero. $30 is added to each remainder.

• Example 4.4 Write a program to convert the unsigned 8-bit binary number
in accumulator A into BCD digits terminated by a NULL character. Each
digit is represented in ASCII code.

Solution:
– For 8 bits, the largest number would be 255, thus 4 bytes, including the

null, are needed to hold the converted BCD digits.
– Repeated division by 10 method is used.
– See program on next page.

12

1. test_dat equ 34
2. org $1000
3. buf db 4 ; to hold the decimal string
4. temp db 2 ; “
5. org $2000
6. lds #$2000 ; initialize SP (recall stack goes down in memory)
7. ldab #test_dat
8. ldy #buf ;use Y to point to decimal string
9. tstb
10. bne normal
11. movb #$30,buf ;store ascii 0 (30) but get here only if test_dat = 0
12. clr buf+1 ; terminate the string with an actual, not ascii, zero
13. bra done
14. normal movb #0,1,-sp ; store the NULL delimiter in the stack
15. clra
16. loop ldx #10
17. idiv
18. addb #$30 ; convert to ASCII code (rem in D but no bigger than B)
19. pshb ; push into stack
20. cpx #0 ; get out of loop when quotient is finally 0
21. beq reverse ; “
22. xgdx ; otherwise, put quotient back in B for next division
23. bra loop
24. reverse tst 0,sp ;move numbers in reverse order into buf
25. beq done ;done when NULL byte reached
26. movb 1,sp+,1,y+
27. bra reverse
28. done swi
29. end

13

Example 4.6: Convert an ASCII String Representing a BCD Number Into a Signed
Binary Number

• Algorithm
Step 1

sign ← 0
error ← 0
number ← 0

Step 2
If the character pointed to by in_ptr is the minus sign, then

sign ← 1
in_ptr ← in_ptr + 1

Step 3
If the character pointed to by in_ptr is the NULL character,

then go to step 4.
else if the character is not a BCD digit, then

error ← 1; go to step 4;
else

number ← number * 10 + m[in_ptr] - $30;
in_ptr ← in_ptr + 1;
go to step 3;

Step 4
If sign = 1 and error = 0 ,then

number ← two’s complement of number;
else

stop;
See program on next slide

14

ASCII String to Signed Binary
1. minus equ $2D ; ASCII code of minus sign
2. org $1000
3. in_buf fcc "9889" ; input ASCII to be converted
4. dB 0 ; null character to terminate ASCII
5. out_buf db 2 ; holds the converted binary value
6. buf2 db 1 ; holds a zero
7. buf1 db 1 ; holds the current digit value
8. sign db 1 ; holds the sign of the number
9. error db 1 ; indicates the occurrence of illegal character
10. org $1500
11. clr sign
12. clr error
13. clr out_buf
14. clr out_buf+1
15. clr buf2
16. ldx #in_buf
17. ldaa 0,x
18. cmpa #minus ; is the first character a minus sign?
19. bne continue ; branch if not minus
20. inc sign ; set the sign to 1
21. inx ; move the pointer
22. continue ldaa 1,x+ ; is the current character a NULL character?
23. lbeq done ; yes, we reach the end of the string
24. cmpa #$30 ; is the character not between 0 to 9?

=========CONTINUED ON NEXT PAGE==========

15

ASCII String to Signed Binary Cont’d.

1. lblo in_error ; get out if number not valid, below 0
2. cmpa #$39 ; "
3. lbhi in_error ; get out if number not valid, above 9
4. suba #$30 ; convert to the BCD digit value
5. staa buf1 ; save the digit temporarily
6. ldd out_buf
7. ldy #10
8. emul ; Y:D D * Y
9. addd buf2 ; add the current digit value
10. std out_buf ; Y holds 0 and should be ignored
11. bra continue
12. in_error ldaa #1
13. staa error
14. done ldaa sign ; check to see if the original number is negative
15. beq positive
16. ldaa out_buf ; if negative, compute its two’s complement
17. ldab out_buf+1 ; “
18. coma ; “
19. comb ; “
• addd #1 ; “
• std out_buf
• positive swi
• end

16

Subroutines

• A sequence of instructions called from various places in the program
• Allows the same operation to be performed with different parameters
• Simplifies the design of complex program by using ‘divide and conquer’

• Instructions related to subroutine calls:
– bsr <rel> ; branch to subroutine
– jsr <opr> ; jump to subroutine
– rts ; return from subroutine

– call <opr> ; used for expanded memory
– rtc ; return from subroutine

17

Program Structure w/Subroutines
Notes:
1. Main will call various subroutines but also a subroutine can call
another, for example subroutine 2.1 could call 3.1
2. A subroutine calling itself is ‘recursion’ but you’ve got to know what
you are doing!

main program

subroutine 1 subroutine 2 subroutine 3

Subroutine 1.1 Subroutine 1.2

Subroutine 1.2.1

Subroutine 2.1

Subroutine 2.1.1

Subroutine 3.1

Subroutine 3.1.1

Subroutine 3.2

Subroutine 3.2.1

Figure 4.7 A structured program

18

General Subroutine Processing

.

.

.
<call> subroutine_x

.

.

.

.

.

.

.

.
<return>

caller

subroutine_x

Figure4.8 Program flow during a subroutine call

19

Important Subroutine Issues

• Keep subroutines independent/portable
– Do not use direct or extended addressing
– Keep in mind the subroutine may be called from numerous locations

including other subroutines

• Know how a subroutine affects registers or make
sure that it doesn’t
– Comments should be used at beginning of routine to aid in writing the

caller
– If needed, push registers on stack at beginning of a subroutine and pull

them just before rts or rtc

• Parameter passing, to or from subroutine
– By registers: send/receive actual data and/or address pointers
– By stack: send/receive actual data and/or address pointers via the stack

but make sure SP points to the return address when rts is executed

20

Two Ways of Preserving Registers
Discuss: advantages and disadvantages of each

1. Incorporate saving in subx:

bsr subx
.
.

bsr subx
.

swi

subx psha ;saving a and x
pshx

.

.
pulx restoring a and x
pula
rts

end

2. Incorporate saving in main:

psha
pshx
bsr subx
pulx
pula

.

.
psha
pshx
bsr subx
pulx
pula
swi

subx
.
.

rts
end

21

In Class Exercise Regarding the Stack
List file is on next slide
Show stack values as program is executed
What would happen if a psha were placed between lines 12 and 13?

1. ;web_stackex.asm
2. org $1500
3. sum rmb 1
4. org $2000
5. lds #$2000
6. ldaa #12
7. ldab #15
8. jsr subra
9. staa sum
10. swi
11. subra aba
12. jsr subrb
13. rts
14. subrb clc
15. sbca #11 ;there is no immediate subtraction w/o carry
16. rts
17. end

22

In Class Exercise Regarding the Stack Cont’d.
1. as12, an absolute assembler for Motorola MCU's, version 1.2e

2. ;web_stackex.asm
3. 1500 org $1500
4. 1500 sum rmb 1
5. 2000 org $2000
6. 2000 cf 20 00 lds #$2000
7. 2003 86 0c ldaa #12
8. 2005 c6 0f ldab #15
9. 2007 16 20 0e jsr subra
10. 200a 7a 15 00 staa sum
11. 200d 3f swi
12. 200e 18 06 subra aba
13. 2010 16 20 14 jsr subrb
14. 2013 3d rts
15. 2014 10 fe subrb clc
16. 2016 82 0b sbca #11 ;there is no immediate subtraction w/o carry
17. 2018 3d rts
18. end

23

1. ;webex4.asm, using eg04rev as a subroutine
2. ;given three arrays of 8-bit numbers, look for a key value in each
3. ;if found place address in result, if key not found, store –1 in result
4. ;based on modifying ex. 4.2 in text and making it a subroutine
5. N1 equ 4
6. N2 equ 5
7. N3 equ 4
8. key equ 100
9. org $1500
10. result1 rmw 1 ;storing addresses, thus need to reserve words
11. result2 rmw 1
12. result3 rmw 1
13. org $2000
14. lds #$2000 ;code grows up in memory and stack grows down/not interfering
15. ldx #array1 ;preparing to call search for the first time
16. ldaa #N1 ; “
17. ldab #key ; “ (not incorporating into search to keep the subr. Independent)
18. bsr search ; using relative addressing because subroutine is close
19. stx result1
20. ldx #array2 ;array2 search starts here
21. ldaa #N2
22. ldab #key
23. bsr search
24. stx result2
25. ldx #array3 ;array3 search starts here
26. ldaa #N3
27. ldab #key
28. bsr search
29. stx result3
30. swi ; Actual exit from program

;Test Data and Subroutine SEARCH IS ON NEXT SLIDE

24

;--------------------subroutine search---
;on entry: x contains pointer to array
; a contains N
; b contains key value
;
;on return: x contains result (Address or -1 if not found)

search nop
loop cmpb 1,x+ ;x(i) = key?

beq found
dbne a,loop ;if not, decrement counter and continue
ldx #$ffff ; only executed if key not in array
rts ; “

found dex ;restore X so it points to matched value
rts ;this rts is executed if key is found in data

array1 db 3,66, 100,44
array2 db 2,150,30,55,88
array3 db 200,100,56,109

end

NOTE the print screen on the next page which shows:
1. Disassembly to see where data is stored: starting at $2036
2. Program execution and memory display of results: 20 38, FF FF (-1), and 20 40
3. The stack showing the last address which was stored in the stack: 20 28

(address following last bsr)

25

26

Using leas (Load Effective Address into SP)

– Local variables allocation (by caller)
• leas -n,sp ; efficiently allocates n

bytes in the stack for local variables by
decrementing SP

– Local variables de-allocation (by subroutine)
• Leas n,sp ;efficiently de-allocates n

bytes from the stack

27

Stack Frame
(also called activation record)

• Def: The region in the stack that holds incoming
parameters, the subroutine return address, local
variables, and saved registers

Local variables

Saved registers

Return address

Incoming parameters

SP

Figure 4.9 Structure of the 68HC12 stack frame

28

Example 4.10 rev’d. Draw the stack frame for the following
program segment after the leas –10,sp instruction is executed.
1. ldd #$1234 ;1st onto stack
2. pshd
3. ldx #$4000 ;2nd onto stack
4. pshx
5. jsr sub_xyz
6. …
7. sub_xyz pshd
8. pshx
9. pshy
10. leas -10,sp ; allocate space
11. …
12. ; now sp can be used as a pointer
13. ; such as stab 2,sp; stores B at 1 of the 10 locations

. . .
14. leas +10,sp ;de-allocate space
15. puly, etc.

rts

$1234

$4000

return address

$1234

$4000

contents of y

10 bytes for local
variables

SP

Figure 4.10 Stack frame of example 4.10

29

Bubble Sort Algorithm
for sorting N elements in ascending order

(inefficient but straightforward)

1. If x[i] > x[i+1], then switch
2. Inc i
3. If n-1 comparisons, go to 4, otherwise return to step 1
4. n <= N – 1 (last element guaranteed to be max and no need to

examine again)
5. If n = 0, exit, otherwise return to

Enhancement: Use a flag, for each pass, which is tested to see if any
exchange made and, if not, discontinue because array is sorted

30

Previous slide: Algorithm

This slide: Main, used for testing

Next slide: Subroutine

Following slide: Print Screen showing execution

;webex_bubl.asm
n equ 10

org $1500
array db $ED,$33,$44,$22,$00,$75,$15,$5A,$12,$AA

org $2000
ldx #array
ldy #n
jsr bublsort
swi

31

• ;***subroutine bublsort***
• ;on entry>
• ; x points to array (assumes unsigned numbers)
• ; y contains N
• ;on return>
• ; array has been sorted into ascending order
• ; registers A,B,X, and Y are changed
1. bublsort pshx
2. dey ; n-1 comparisons
3. pshy
4. beq done ;depends on pshy not affecting flags
5. loop ldaa 0,x
6. cmpa 1,x
7. bls contin
8. ldab 1,x
9. stab 0,x
10. staa 1,x
11. contin inx
12. dbne y,loop
13. swi ;stops here for testing purposes
14. puly
15. pulx
16. bra bublsort
17. done leas 4,sp ;reset SP because of two pushes
18. rts
NOTE Execution on next slide: maximum values bubbling to top and the final X value less each

time because Y is decremented after each loop

32

33

Using the D-Bug12 Functions for I/O
Table 4.2 D-Bug12 monitor (version 4.x.x) routines

Subroutine Function pointer address

far main ()
getchar ()
putchar ()
printf ()
far GetCmdLine ()
far sscanhex ()
isxdigit ()
toupper ()
isalpha ()
strlen ()
strcpy ()
far out2hex ()
far out4hex ()
SetUserVector ()
far WriteEEByte()
far EraseEE ()
far ReadMem ()
far WriteMem ()

Start of D-Bug12
Get a character from SCI0 or SCI1
Send a character out to SCI0 or SCI1
Formatted string output-translates binary values to string
Get a line of input from the user
Convert ASCII hex string to a binary integer
Check if a character (in B) is a hex digit
Convert lower-case characters to upper-case
Check if a character is alphabetic
Returns the length of a NULL-terminated string
Copy a NULL-terminated string
Output 8-bit number as 2 ASCII hex characters
Output a 16-bit number as 4 ASCII hex characters
Setup a vector to a user's interrupt service routine
Write a byte to the on-chip EEPROM memory
Bulk erase the on-chip EEPROM memory
Read data from the HCS12 memory map
Write data to the HCS12 memory map

$EE80
$EE84
$EE86
$EE88
$EE8A
$EE8E
$EE92
$EE94
$EE96
$EE98
$EE9A
$EE9C
$EEA0
$EEA4
$EEA6
$EEAA
$EEAE
$EEB2

34

Rules for using D-Bug12 I/O Functions

(All functions listed in Table 4.2 are written in C language.)

• The first parameter to the function is passed in accumulator D. The
rest are pushed onto the stack in the reverse order they are listed in
the function declaration.

• Parameters of type char will occupy the lower order byte of a word
pushed onto the stack and must be converted to type int.

• Parameters pushed onto the stack before the function is called
remain on the stack when the function returns. The caller “removes”
passed parameters from the stack using the LEAS instruction.

• All 8- and 16-bit values are returned in accumulator D. A returned
value of type char is returned in accumulator B. Boolean function
results are 0 for false and non-zero for true.

• Registers are not preserved and, if needed, must be saved on the
stack before calling the function.

35

Using the printf function
Notes on Next Slide:
• Uses the printf to send a message and data to the

terminal

• By putting printf in a loop, one can print an array of
numbers

• As required the last number (num2) printed is the first
pushed on the stack

• An error occurred in assembling: “delimiter missing”
due to improper quotes at beginning of string, retyped
and was ok.

• Extra line feeds and carriage returns were added to
provide space after output

• The values are converted to decimal before printing.

36

