
ECET 310-001
Chapter 2, Part 2 of 3

W. Barnes, 9/2006, rev’d. 10/07
Ref. Huang, Han-Way, The HCS12/9S12: An Introduction
to Software and Hardware Interfacing, Thomson/Delmar.

2

In This Set of Slides:

1. Introduction to Program Loops
2. 3 Types of finite loops
3. CCR & Branching
4. Various Types of Branching

3

Introduction to Program Loops
• Why? Efficiency and flexibility in programming

– When doing a task three or more times, instead of
rewriting the code, a loop is used

– In example 2.13, the following code is used 4 times:
xgdx
ldx #10
idiv
addb #$30
stab 2,Y

These five instructions can be put into a loop, just making sure that
the offset in the stab instruction decrements each time so that
it goes from 4 to 0.

4

Program Loops Continued

Infinite (or endless or forever) Loop:
do statement S forever

Figure 2.4 An infinite loop

S

5

Program Loops Continued

3 Finite Loop types:
1. For i = n1 to n2 do statement S or

For i = n2 downto n1 do statement S

2. While C do statement S

3. Repeat statement S until C

• How is the exit from a loop implemented?
With conditional branch instructions, which
depend on the CCR register flags for a
decision.

6

Flowcharts of the 3 Types of finite loops
(1) Using an index (counter)

For i = n1 to n2 do statement S or
For i = n2 downto n1 do statement S

Figure 2.5 For looping construct

I ← i1

I ≤ i2 ?

S

yes

I ← I + 1

(a) For I = i1 to i2 DO S

no

I ← i2

I ≥ i1 ?

S

yes

I ← I - 1

(b) For I = i2 downto i1 DO S

no

7

Flowcharts of the 3 Types of Finite Loops cont’d

(2) While C do statement S

C S
true

false

Figure 2.6 The While ... Do looping construct

Figure 2.7 The Repeat ... Until looping construct

initialize C

S

C
true

false

(3) Repeat statement S until C
Q. What’s wrong with the flow chart?

8

CCR & Branching

• Four types of branch instructions
– Unconditional branch: always executes

– Simple branches: branch is taken based on a specific bit of CCR

– Unsigned branches: branches are taken when a comparison or test
of unsigned numbers results in a specific combination of CCR bits

• Associate higher, lower, and same with unsigned numbers

– Signed branches: branches are taken when a comparison or test of
signed quantities are in a specific combination of CCR bits

• Associate greater, less, and equal with signed numbers

• Two categories of branches (See next two slides)
– Short branches (most used): in the range of -128 ~ +127 bytes

– Long branches: in the range of 64KB (note L at beginning of each
mnemonic)

S X I

7 6 5 4 3 2 1 0

Figure 2.8 Condition code register

H N Z V C

9

10

Table 2.3 Summary of long branch instructions

Mnemonic Function

Unary Branches

LBRA
LBRN

Long branch always
Long branch never

Equation or Operation

Simple Branches

Mnemonic Function

LBCC
LBCS
LBEQ
LBMI
LBNE
LBPL
LBVC
LBVS

Long branch if carry clear
Long branch if carry set
Long branch if equal
Long branch if minus
Long branch if not equal
Long branch if plus
Long branch if overflow is clear
Long branch if overflow set

1 = 1
1 = 0

Unsigned Branches

Mnemonic Function

LBHI
LBHS
LBLO
LBLS

Long branch if higher
Long branch if higher or same
Long branch if lower
Long branch if lower or same

C = 0
C = 1
Z = 1
N = 1
Z = 0
N = 0
V = 0
V = 1

Equation or Operation

Equation or Operation

C + Z = 0
C = 0
C = 1

C + Z = 1

Mnemonic Function Equation or Operation

Signed Branches

LBGE
LBGT
LBLE
LBLT

Long branch if greater than or equal
Long branch if greater than
Long branch if less than or equal
Long branch if less than

N V = 0
Z + (N V) = 0
Z + (N V) = 1

N V = 1

11

Branching continued

Compare and Test Instructions
– None of these instructions actually changes any values but they

affect the flags and are then followed by conditional branch
instructions

Table 2.4 Summary of compare and test instructions

Mnemonic Function

Compare instructions

CBA
CMPA
CMPB
CPD
CPS
CPX
CPY

Compare A to B
Compare A to memory
Compare B to memory
Compare D to memory
Compare SP to memory
Compare X to memory
Compare Y to memory

 Operation

(A) - (B)
(A) - (M)
(B) - (M)

(D) - (M:M+1)
(SP) - (M:M+1)
(X) - (M:M+1)
(Y) - (M:M+1)

Test instructions

Mnemonic Function

TST
TSTA
TSTB

Test memory for zero or minus
Test A for zero or minus
Test B for zero or minus

Operation

(M) - $00
(A) - $00
(B) - $00

12

Branching Continued

• Loop Primitive Instructions
These short branch instructions decrement or increment a loop counter to
determine if the looping should continue.

13

Branching & Loops cont’d
Example 2.14 Write a program to add an array of N 8-bit numbers and store the sum at memory
locations $1500~$1501. Use the For i = n1 downto n2 do looping construct.

1. ;webex2_14a, adds N numbers and stores sum
2. ;accesses and stores sum each time in the loop
3. ;includes dbne and auto-incrementing of index
4. N equ 3
5. org $1500
6. array db 1,2,255 ;test data
7. sum rmw 1
8. org $2000
9. ldx #array
10. ldaa #N
11. movw #0,sum ;initially clear sum
12. loop ldy sum ;get sum
13. ldab 1,x+ ; get x(i) and point to x(i+1),
14. aby ; and add
15. sty sum
16. dbne a,loop ;update counter and check if done
17. swi
18. end

Exercise: (1) Draw a flow chart for this solution and compare with figure 2.9 in text.
(2) label program and flow chart into sections: initialization, loop test, update counter,
loop statements

14

Branching (& loops) continued
Example 2.14 Second approach, not accessing sum each time (since we see Y undisturbed)

1. ;webex2_14b, adds N numbers and stores sum
2. ;includes dbne and auto-incrementing index
3. ;does not rely on accessing sum from memory

4. N equ 3
5. org $1500
6. array db 1,2,255 ;test data
7. sum rmw 1

8. org $2000
9. ldx #array
10. ldaa #N
11. ldy #0 ;prepare y to accumulate sum
12. loop ldab 1,x+ ;get x(i)
13. aby ; and add to sum
14. dbne a,loop
15. sty sum ;no need to pre-clear
16. swi
17. end

15

Branching (& Loops) Continued
Example 2.15 Write a program to find the maximum element from an array of N 8-bit elements using

the repeat S until C looping construct.
Exercise: label program and flow chart into sections: initialization, loop test, update counter, loop

statements- ALSO, try signed numbers [note use of BGE (see table 2.2)in program-)]

Start

max_val ← array[0]
i ← N-1

max_val < array[i] ?

max_val ← array[i]

yes

no

i ← i - 1

i = 0?

Stop

yes

no

Figure 2.10 Logic flow of example 2.15

16

Branching & Loops continued
Ex. 2.15 code

1. N equ 10
2. org $1500
3. max_val rmb 1
4. org $2000
5. ldaa array ; set array[0] as the initial max
6. staa max_val ; in this case max_val becomes 1
7. ldx #array+N-1 ; start from the end of the array
8. ldab #N-1 ; set loop count for N – 1 comparisons
9. loop ldaa max_val
10. cmpa 0,x ;compare current max_val w/array[i]
11. bge chk_end ;if > or = skip to chk_end
12. ldaa 0,x
13. staa max_val
14. chk_end dex
15. dbne b,loop ; finish all the comparisons yet?
16. forever bra forever ; swi better for debugging
17. array db 1,3,5,6,19
18. db 20,54,64,74,29
19. end

Questions:
(1) What are the advantages and disadvantages of storing data at the end of the program?
(2) In what applications would line #16 be useful and not useful?

17

Branching (& loops) continued

In class exercises (be sure to consider what addressing
modes to use for the following):

1. Write a program segment to move 5 bytes starting at $1500 to
locations starting at $1600

2. Repeat (1) for words

3. Draw flowcharts.

