
ECET 310-001
Chapter 1 Concluded

W. Barnes, 9/2006, rev’d 9/07
Ref. Huang, Han-Way, The HCS12/9S12: An Introduction
to Software and Hardware Interfacing, Thomson/Delmar.

2

In this set of Slides:

1. Last of the Six Basic Addressing Modes
2. Introduction to Instructions

• Three Types of Move/Copy
• Add/Subtract

3. Instruction Execution & Queue
4. Three Simple Example Programs

3

Six Basic Addressing Modes cont’d
6. Indexed, which has 5 basic sub-types

1. Constant (signed) offset (5, 9, 16 bits)

ldaa 10,x ; loads a with m[x+10]

2. Indirect constant or reg. D to create a POINTER to ADDRESS of operand

ldaa [10,x]
; loads A with m[], which is pointed to by contents of m[x+10,11]& [x+11]

ex. If X = $1000, M[$1010 & $1011] = $20 & $50, Then, A M[$2050]

1. Auto pre OR post increment or decrement of index register (N.B. the number
given with this type of addressing is the amount of incr or dec, not an offset)

ldaa 1,-SP ;decrements SP by 1 and then loads A
staa 2, X+ ;stores A and then increments X by 2

Questions:
In #1, what determines if the offset is 5, 9, or 16 bits?
What distinguishes #2 from #1 above?
In #3, how can you indicate whether instruction executes or inc/decr first?

Indexed Addressing cont’d on next slide

4

Sixth Basic Addressing Mode cont’d
[5 basic types of Indexed Mode cont’d]

4. Accumulator Offset Indexed Addressing
• The accumulator can be the 8-bit A or B or the

16-bit accumulator D.
• The base register can be X, Y, SP, or PC.

ldaa B,X ;loads A with m[B+X]
stab A,Y ;stores B in m[A+Y]

Question:
The effective address is the sum of the index register plus the

unsigned number in the accumulator. Therefore, if X = 2A 04 and
B = 4C in the first example, where in memory will the uctlr get the
number to load into A?

Indexed Addressing cont’d on next slide

5

Sixth Basic Addressing Mode Concluded
[5 basic types of Indexed Mode concluded]

5. Accumulator D Indirect Indexed Addressing Value in D is added to
the value in the base index register to form the address of the memory
location that contains the address to the memory location affected by
the instruction. Square brackets distinguish this addressing mode from
accumulator D offset indexing (type #4, on previous slide).

Example using Computed GOTO
1. jmp [D,PC] ;D previously loaded with 0,2,or 4
2. go1 dc.w target1 ; note these assembler
3. go2 dc.w target2 ; directives store
4. go3 dc.w target3 : 2-byte addresses here

…
5. target1 …

.
6. target2 …

.
7. target3 …

Suppose D = 4 on reaching jmp instruction, then 4 is added to PC, which will now
point to go3 and thus target3 will be used in the jmp instruction. This results in the
instructions starting at target3 to be executed.

Question: in line 2 of the example, how many labels are used and what are they?

6

Introduction to Instructions

What to keep in mind when using instructions:

How does the instruction affect registers
and/or memory?

How does the instruction affect the CCR?

Is it clear where the input numbers are and
where the results (destination) should go?

Is the program using signed numbers?

What kind of addressing modes are
available for a particular instruction?

7

Introduction to Instructions Cont’d.,
3 basic types of move/copy:

1. Load / Store registers from / to memory
• updates the N and Z flags, clear V flag
• See table 1.4, p.19 (next slide)
• Examples: ldaa 0,X ; staa $20 ; stx $8000 ; ldd #100

2. Transfer, Exchange, Sign Extend (registers only)
• See table 1.5, p.20, (slide after next)
• Examples : tab ; TAB, tfr A,X ; exg D, X ; sex A, X

3. Move (mem ↔ mem, I/O register ↔ mem)
• Also move immediate values into mem
• See table 1.6, p. 22 (second slide after next)
• EXs: movb #0, $1500 ; movb $100,$800 ; movw 0,X, 0,Y

Questions:
How does the Appendix A show that flags are being changed (affected)

by a load or store instruction?
How are memory and registers affected by the above examples?

8

Table 1.4 Load and store instructions

Mnemonic

LDAA
LDAB
LDD
LDS
LDX
LDY
LEAS
LEAX
LEAY

STAA
STAB
STD
STS
STX
STY

Store Instructions

Mnemonic

Function

Load A
Load B
Load D
Load SP
Load index register X
Load index register Y
Load effective address into SP
Load effective address into X
Load efective address into Y

Operation

(M) ⇒ A
(M) ⇒ B
(M:M+1) ⇒ (A:B)
(M:M+1) ⇒ SP
(M:M+1) ⇒ X
(M:M+1) ⇒ X
Effective address ⇒ SP
Effective address ⇒ X
Effective address ⇒ Y

Function Operation

Store A
Store B
Store D
Store SP
Store X
Store Y

(A) ⇒ M
(B) ⇒ M
(A) ⇒ M, (B) ⇒ M+1
(SP) ⇒ M, M+1
(X) ⇒ M:M+1
(Y) ⇒ M:M+1

9

Table 1.5, Xfer, Exchange, and Sign Extend Instructions

Questions: In TAB, what happens to register A?
What is at least one difference between Load and Transfer instructions?
What is a difference between Transfer and Exchange instructions?

Sign Extension

(Y) SPXfer Y to SPTYS

Exchange

(A,B,CCR) X,Y, SPSign extend 8-bit operandSEX

(Y) ↔ (D)Exchange Y and DXGDY

(X) ↔ (D)Exchange X and DXGDX

(A) ↔ (B), etc.Exchange two registersEXG reg1, reg2

(SP) YXfer SP to YTSY

(X) SPXfer X to SPTXS

(SP) XXfer SP to XTSX

(src) objXfer reg. to reg.TFR src, obj

(CCR) AXfer CCR to ATPA

(A) CCRXfer A to CCRTAP

(B) AXfer B to ATBA

(A) BXfer A to BTAB

Transfer

10

Move instructions

(Used within memory, not registers, but can
also use to move immediate number into

memory)

11

Introduction to Instructions cont’d

• Add/Sub Instructions

– Destinations are a CPU register or accumulator.

– Three-operand ADD or SUB instructions always include the C flag
as an operand and are used to perform multi-precision addition or
subtraction

– See table 1.7, p.22 (next slide)
• adca $1000 ; A ⇐ [A] + [$1000] + C
• suba $1002 ; A ⇐ [A] - [$1002]
• sbca $1000 ; A ⇐ [A] - [$1000] - C
• adda $1000 ; A ⇐ [A] + [$1000]

Question: How can you change the second example to subtract the
number $44 from register A? What kind of addressing will be
needed?

12

Add Instructions

Table 1.7 Add and subtract instructions

Mnemonic

ABA
ABX
ABY

ADCA
ADCB
ADDA
ADDB
ADDD

Function

Add B to A
Add B to X
Add B to Y
Add with carry to A
Add with carry to B
Add without carry to A
Add without carry to B
Add without carry to D

Operation

(A) + (B) ⇒ A
(B) + (X) ⇒ X
(B) + (Y) ⇒ Y
(A) + (M) + C ⇒ A
(B) + (M) + C ⇒ B
(A) + (M) ⇒ A
(B) + (M) ⇒ B
(A:B) + (M:M+1) ⇒ A:B

Subtract Instructions

Mnemonic Function

SBA
SBCA
SBCB
SUBA
SUBB
SUBD

Subtract B from A
Subtract with borrow from A
Subtract with borrow from B
Subtract memory from A
Subtract memory from B
Subtract memory from D

(A) - (B) ⇒ A
(A) - (M) - C ⇒ A
(B) - (M) - C ⇒ B
(A) - (M) ⇒ A
(B) - (M) ⇒ B
(D) - (M:M+1) ⇒ D

Operation

13

Instruction Execution Cycle

– One or more read cycles to fetch instruction
opcode bytes and addressing information

– One or more read cycles to fetch the memory
operand (s) (optional)

– Perform the operation specified by the opcode
– One or more write cycles to write back the result

to either a register or a memory location
(optional)

14

Instruction Queue

– The HCS12 executes one instruction at a time
and many instructions take several clock cycles
to complete.

– When the CPU is performing the operation, it
does not need to access memory.

• The HCS12 prefetches instructions when the CPU is
not accessing memory to speedup the instruction
execution process.

• There are two 16-bit queue stages and one 16-bit
buffer. Unless buffering is required, program
information is first queued in stage 1, and then
advanced to stage 2 for execution.

15

Simple Example Programs
(NOTE: see the Tracing Programs handout)

1. ;webex1, 8/4/06
2. ;program adds (- 50) to a number and stores result
3. num equ -50 ; $CE = -50
4. org $1800
5. testval db 60 ; $3C = +60
6. answer rmb 1

7. org $2000
8. ldaa #num
9. adda testval ; -50 + 60 = 10 = $0A
10. staa answer
11. swi
12. end

16

Simple Example Programs Cont’d.

1. ;webex1a, 8/4/06
2. ; program adds (- 50) to a number and stores result
3. ; (revision of webex1 to use indexed addressing)
4. num equ -50
5. org $1800
6. testval db 60
7. answer rmb 1 ;reserve memory byte at answer

8. org $2000
9. ldaa #num
10. ldx #testval
11. ldy #answer
12. adda 0,x
13. staa 0,y
14. swi
15. end

17

Next Slide:

• a list file for webex1a
• inset showing list of all (asm,

lst, s19) files in directory

18

19

Simple Example Programs Cont’d.
1. ;webex1b, 8/4/06, program adds (- 50) to a number and stores result
2. ; (revision of webex1 with a test for invalid results:
3. ; if result exceeds 8-bit limits for signed numbers
4. ; store FF in location [valid], otherwise store 00)
5. ; Program also includes a conditional branch
6. num equ -50
7. org $1800
8. testval db 60
9. answer rmb 1 ;reserve memory byte at answer
10. valid rmb 1

11. org $2000
12. clr valid ;make default 00
13. ldaa #num
14. adda testval
15. bvc good ;skip if results ok (checks overflow flag, table 2.2, p. 54)
16. com valid ;make FF
17. good staa answer
18. swi
19. end

20

Simple Example Programs Cont’d.
1. ;webex1c, 9/13/06,; program adds - 50 to a number and stores result
2. ; (revision of webex1 with a test for invalid results: see web1b for details)
3. ; and use of indexed w/ normal and auto incr.
4. num equ -50
5. org $1800
6. data db 60, -200
7. results rmb 2
8. valid rmb 1
9. org $2000
10. clr valid ;make default 00
11. ldab #num
12. ldx #data
13. ldy #results
14. ldaa 1,x+
15. aba ;add (-50) to first number
16. bvc good ;skip if results ok (overflow flag clear)
17. movb #$FF,valid ; otherwise ...
18. good staa 1,y+
19. ldaa 0,x
20. aba ;add (-50) to second number
21. bvc good2 ;skip if results ok
22. movb #$FF,valid
23. good2 staa 0,y
24. swi
25. end

